हिंदी

त्रिभुजों ABC और DEF में, AB = FD तथा ∠A = ∠D है। दोनों त्रिभुज SAS अभिगृहीत से सर्वांगसम होंगे, यदि ______। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

त्रिभुजों ABC और DEF में, AB = FD तथा ∠A = ∠D है। दोनों त्रिभुज SAS अभिगृहीत से सर्वांगसम होंगे, यदि ______।

विकल्प

  • BC = EF

  • AC = DE

  • AC = EF

  • BC = DE

MCQ
रिक्त स्थान भरें

उत्तर

त्रिभुजों ABC और DEF में, AB = FD तथा ∠A = ∠D है। दोनों त्रिभुज SAS अभिगृहीत से सर्वांगसम होंगे, यदि AC = DE। 

स्पष्टीकरण - 

दिया गया है, ΔABC और ΔDEF में,

AB = DF और ∠A = ∠D

हम जानते हैं कि, एएसए नियम के अनुसार दो त्रिभुज सर्वांगसम होंगे, यदि दो कोण और एक त्रिभुज की सम्मिलित भुजा दूसरे त्रिभुज के दो कोणों और सम्मिलित भुजा के बराबर हों।

∴ AC = DE

shaalaa.com
एक त्रिभुज के कुछ गुण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: त्रिभुज - प्रश्नावली 7.1 [पृष्ठ ६४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
अध्याय 7 त्रिभुज
प्रश्नावली 7.1 | Q 11. | पृष्ठ ६४

संबंधित प्रश्न

एक समद्विबाहु त्रिभुज ABC में जिसमें AB = AC है, ∠B और ∠C के समद्विभाजक परस्पर बिंदु O पर प्रतिच्छेद करते हैं। A और O को जोड़िए। दर्शाइए कि:

  1. OB = OC
  2. AO कोण A को समद्विभाजित करता है।

△ABC में, AD भुजा BC का लम्ब समद्विभाजक है (देखिए आकृति)। दर्शाइए △ABC एक समद्विबाहु त्रिभुज है, जिसमें AB = AC है।


ABC एक समद्विबाहु त्रिभुज है, जिसमें बराबर भुजाओं AC और AB पर क्रमशः शीर्षलंब BE और CF खींचे गए हैं (देखिए आकृति)। दर्शाइए कि ये शीर्षलंब बराबर हैं।


ABC एक त्रिभुज है जिसमें AC और AB पर खींचे गए शीर्षलंब BE और CF बराबर हैं (देखिए आकृति)। दर्शाइए कि

  1. △ABE ≌ △ACF
  2. AB = AC, अर्थात् △ABC एक समद्विबाहु त्रिभुज है।


ABC और DBC समान आधार BC पर स्थित दो समद्विबाहु त्रिभुज हैं (देखिए आकृति)। दर्शाइए कि
∠ABD = ∠ACD है।


ABC एक समद्विबाहु त्रिभुज है, जिसमें AB = AC है। भुजा BA बिंदु D तक इस प्रकार बढ़ाई गई है कि AD = AB है (देखिए आकृति)। दर्शाइए कि ∠BCD एक समकोण है।


दर्शाइए कि किसी समबाहु त्रिभुज का प्रत्येक कोण 60° होता है।


D एक त्रिभुज ABC की भुजा BC पर एक बिंदु इस प्रकार स्थित है कि AD कोण BAC को समद्विभाजित करता है। तब, ______ 


CDE एक वर्ग ABCD की भुजा CD पर बना एक समबाहु त्रिभुज है (आकृति)। दर्शाइए कि ∆ADE ≅ ∆BCE है।


एक ∆PSR की भुजा SR पर एक बिंदु Q इस प्रकार स्थित है कि PQ = PR है। सिद्ध कीजिए कि PS > PQ है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×