हिंदी

Choose correct alternatives: If acute angle between lines ax2 + 2hxy + by2 = 0 is, π4, then 4h2 = ______. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose correct alternatives:

If acute angle between lines ax2 + 2hxy + by2 = 0 is, `pi/4`, then 4h2 = ______.

विकल्प

  • a2 + 4ab + b2 

  • a2 + 6ab + b2 

  • (a + 2b)(a + 3b)

  • (a – 2b)(2a + b)

MCQ
रिक्त स्थान भरें

उत्तर

If acute angle between lines ax2 + 2hxy + by2 = 0 is, `pi/4`, then 4h2 = `bb(underline(a^2 + 6ab + b^2)`.

shaalaa.com
Angle between lines represented by ax2 + 2hxy + by2 = 0
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Pair of Straight Lines - Miscellaneous Exercise 4 [पृष्ठ १३०]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Pair of Straight Lines
Miscellaneous Exercise 4 | Q 1.08 | पृष्ठ १३०

संबंधित प्रश्न

Show that the lines represented by x2 + 6xy + 9y2 = 0 are coincident.


Find the measure of the acute angle between the line represented by `3"x"^2 - 4sqrt3"xy" + 3"y"^2 = 0` 


Find the measure of the acute angle between the line represented by:

2x2 + 7xy + 3y2 = 0


Find the measure of the acute angle between the line represented by:

4x2 + 5xy + y2 = 0


Find the measure of the acute angle between the line represented by:

(a2 - 3b2)x2 + 8abxy + (b2 - 3a2)y2 = 0


If the angle between the lines represented by ax2 + 2hxy + by2 = 0 is equal to the angle between the lines 2x2 - 5xy + 3y2 = 0, then show that 100 (h2 - ab) = (a + b)2


Find the combined equation of lines passing through the origin and each of which making an angle of 60° with the Y-axis.


Find the joint equation of the pair of lines which bisect angles between the lines given by x2 + 3xy + 2y2 = 0 


Show that the lines x2 − 4xy + y2 = 0 and x + y = 10 contain the sides of an equilateral triangle. Find the area of the triangle. 


If the slope of one of the lines given by ax2 + 2hxy + by2 = 0 is three times the other, prove that 3h2 = 4ab.


Show that the line 3x + 4y + 5 = 0 and the lines (3x + 4y)2 - 3(4x - 3y)2 = 0 form the sides of an equilateral triangle.


Show that the lines x2 - 4xy + y2 = 0 and the line x + y = `sqrt6` form an equilateral triangle. Find its area and perimeter.


Prove that the product of length of perpendiculars drawn from P(x1, y1) to the lines represented by ax2 + 2hxy + by2 = 0 is `|("ax"_1^2 + "2hx"_1"y"_1 + "by"_1^2)/(sqrt("a - b")^2 + "4h"^2)|`


The acute angle between the lines represented by x2 + xy = 0 is ______.


Find the measure of the acute angle between the lines given by x2 − 4xy + y2 = 0 


Find the value of h, if the measure of the angle between the lines 3x2 + 2hxy + 2y2 = 0 is 45°. 


If θ is the acute angle between the lines given by ax2 + 2hxy + by2 = 0 then prove that tan θ = `|(2sqrt("h"^2) - "ab")/("a" + "b")|`. Hence find acute angle between the lines 2x2 + 7xy + 3y2 = 0 


If the angle between the lines represented by ax2 + 2hxy + by2 = 0 is equal to the angle between the lines 2x2 − 5xy + 3y2 = 0, then show that 100(h2 − ab) = (a + b)2


The angle between the pair of straight lines 2x2 - 6xy + y2 = 0 is tan-1 (p), where p = ______


Which of the following pair of straight lines intersect at right angles?


The acute angle between the curve x = 2y2 and y = 2x2 at `(1/2, 1/2)` is ______.


If slopes of lines represented by kx2 + 5xy + y2 = 0 differ by 1, then k = ______.


If θ is the acute angle between the lines represented by ax2 + 2hxy + by2 = 0 then prove that tan θ = `|(2sqrt(h^2 - ab))/(a + b)|`


Find the combined equation of the pair of lines through the origin and making an angle of 30° with the line 2x – y = 5


If θ is the acute angle between the lines given by 3x2 – 4xy + by2 = 0 and tan θ = `1/2`, find b.


If the lines represented by 5x2 – 3xy + ky2 = 0 are perpendicular to each other, find the value of k.


Prove that the acute angle θ between the lines represented by the equation ax2 + 2hxy+ by2 = 0 is tanθ = `|(2sqrt(h^2 - ab))/(a + b)|` Hence find the condition that the lines are coincident.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×