Advertisements
Advertisements
प्रश्न
Find the joint equation of the pair of lines which bisect angles between the lines given by x2 + 3xy + 2y2 = 0
उत्तर
x2 + 3xy + 2y2 = 0
∴ x2 + 2xy + xy + 2y2 = 0
∴ x(x + 2y) + y(x + 2y) = 0
∴ (x + 2y)(x + y) = 0
∴ separate equations of the lines represented by x2 + 3xy + 2y2 = 0 are x + 2y = 0 and x + y = 0
Let P (x, y) be any point on one of the angle bisector. Since the points on the angle bisectors are equidistant from both the lines,
the distance of P(x, y) from the line x + 2y = 0
= the distance of P(x, y) from the line x + y = 0
∴ `|("x" + "2y")/sqrt(1 + 4)| = |("x + y")/sqrt(1 + 1)|`
∴ `("x" + "2y")^2/5 = ("x + y")^2/2`
∴ 2(x + 2y)2 = 5(x + y)2
∴ 2(x2 + 4xy + 4y2) = 5(x2 + 2xy + y2)
∴ 2x2 + 8xy + 8y2 = 5x2 + 10xy + 5y2
∴ 3x2 + 2xy - 3y2 = 0
This is the required joint equation of the lines which bisect the angles between the lines represented by x2 + 3xy + 2y2 = 0
APPEARS IN
संबंधित प्रश्न
Show that the lines represented by x2 + 6xy + 9y2 = 0 are coincident.
Find the measure of the acute angle between the line represented by `3"x"^2 - 4sqrt3"xy" + 3"y"^2 = 0`
Find the measure of the acute angle between the line represented by:
2x2 + 7xy + 3y2 = 0
Find the combined equation of lines passing through the origin each of which making an angle of 30° with the line 3x + 2y - 11 = 0
If the angle between the lines represented by ax2 + 2hxy + by2 = 0 is equal to the angle between the lines 2x2 - 5xy + 3y2 = 0, then show that 100 (h2 - ab) = (a + b)2.
Choose correct alternatives:
If acute angle between lines ax2 + 2hxy + by2 = 0 is, `pi/4`, then 4h2 = ______.
Show that the lines x2 − 4xy + y2 = 0 and x + y = 10 contain the sides of an equilateral triangle. Find the area of the triangle.
If the slope of one of the lines given by ax2 + 2hxy + by2 = 0 is three times the other, prove that 3h2 = 4ab.
Show that the line 3x + 4y + 5 = 0 and the lines (3x + 4y)2 - 3(4x - 3y)2 = 0 form the sides of an equilateral triangle.
Show that the lines x2 - 4xy + y2 = 0 and the line x + y = `sqrt6` form an equilateral triangle. Find its area and perimeter.
If the slope of one of the lines given by ax2 + 2hxy + by2 = 0 is square of the slope of the other line, show that a2b + ab2 + 8h3 = 6abh.
Prove that the product of length of perpendiculars drawn from P(x1, y1) to the lines represented by ax2 + 2hxy + by2 = 0 is `|("ax"_1^2 + "2hx"_1"y"_1 + "by"_1^2)/(sqrt("a - b")^2 + "4h"^2)|`
Find the measure of the acute angle between the lines given by x2 − 4xy + y2 = 0
Find the value of h, if the measure of the angle between the lines 3x2 + 2hxy + 2y2 = 0 is 45°.
If θ is the acute angle between the lines given by ax2 + 2hxy + by2 = 0 then prove that tan θ = `|(2sqrt("h"^2) - "ab")/("a" + "b")|`. Hence find acute angle between the lines 2x2 + 7xy + 3y2 = 0
If the angle between the lines represented by ax2 + 2hxy + by2 = 0 is equal to the angle between the lines 2x2 − 5xy + 3y2 = 0, then show that 100(h2 − ab) = (a + b)2
The angle between the pair of straight lines 2x2 - 6xy + y2 = 0 is tan-1 (p), where p = ______
The angle between lines `(x - 2)/2 = (y - 3)/(- 2) = (z - 5)/1` and `(x - 2)/1 = (y - 3)/2 = (z - 5)/2` is ______.
If 4ab = 3h2, then the ratio of slopes of the lines represented by the equation ax2 +2hxy + by2 = 0 will be ______
The acute angle between lines x - 3 = 0 and x + y = 19 is ______.
Which of the following pair of straight lines intersect at right angles?
The acute angle between the curve x = 2y2 and y = 2x2 at `(1/2, 1/2)` is ______.
If slopes of lines represented by kx2 + 5xy + y2 = 0 differ by 1, then k = ______.
If ax2 + 2hxy + by2 = 0 represents a pair of lines and h2 = ab ≠ 0 then find the ratio of their slopes.
If the lines represented by 5x2 – 3xy + ky2 = 0 are perpendicular to each other, find the value of k.
Prove that the acute angle θ between the lines represented by the equation ax2 + 2hxy+ by2 = 0 is tanθ = `|(2sqrt(h^2 - ab))/(a + b)|` Hence find the condition that the lines are coincident.