Advertisements
Advertisements
प्रश्न
Prove that the acute angle θ between the lines represented by the equation ax2 + 2hxy+ by2 = 0 is tanθ = `|(2sqrt(h^2 - ab))/(a + b)|` Hence find the condition that the lines are coincident.
उत्तर
Let m1 and m2 be slopes of lines represented by the equation
ax2 + 2hxy + by2 = 0.
∴ `m_1 + m_2 = (-2h)/b and m_1 m_2 = a/b`
∴ `(m_1 - m_2)^2 = (m_1 + m_2)^2 - 4m_1 m_2`
= `((2h)/b)^2 - 4(a/b)`
= `(4h^2)/b^2 - (4a)/b`
= `(4h^2 - 4ab)/b^2`
= `(4(h^2 - ab))/b^2`
∴ `m_1 - m_2 = ± (2sqrt(h^2 - ab))/b`
As θ is the acute angle between the lines, then:
`tan theta = |(m_1 - m_2)/(1 + m_1m_2)|`
`= |((2sqrt(h^2 - ab))/(b))/(1 + a/b)|`
`tan theta = |(2sqrt(h^2 - ab))/(a + b)|`
Now, if the lines are coincident,
then θ = 0
tan θ = 0
Lines represented by ax2 + 2hxy + by2 = 0 are coincident if and only if m1 = m2
∴ m1 - m2 = 0
∴ `(2sqrt(h^2 - ab))/b = 0`
∴ `h^2 - ab = 0`
∴ `h^2 = ab`
Lines represented by ax2 + 2hxy + by2 = 0 are coincident if and only if h2 = ab.
APPEARS IN
संबंधित प्रश्न
. Show that the lines represented by 3x2 - 4xy - 3y2 = 0 are perpendicular to each other.
Find the value of k if lines represented by kx2 + 4xy – 4y2 = 0 are perpendicular to each other.
Find the measure of the acute angle between the line represented by `3"x"^2 - 4sqrt3"xy" + 3"y"^2 = 0`
Find the measure of the acute angle between the line represented by:
2x2 + 7xy + 3y2 = 0
Find the measure of the acute angle between the line represented by:
(a2 - 3b2)x2 + 8abxy + (b2 - 3a2)y2 = 0
Find the combined equation of lines passing through the origin each of which making an angle of 30° with the line 3x + 2y - 11 = 0
If the angle between the lines represented by ax2 + 2hxy + by2 = 0 is equal to the angle between the lines 2x2 - 5xy + 3y2 = 0, then show that 100 (h2 - ab) = (a + b)2.
Find the combined equation of lines passing through the origin and each of which making an angle of 60° with the Y-axis.
Choose correct alternatives:
If acute angle between lines ax2 + 2hxy + by2 = 0 is, `pi/4`, then 4h2 = ______.
Find the joint equation of the pair of lines which bisect angles between the lines given by x2 + 3xy + 2y2 = 0
Show that the lines x2 − 4xy + y2 = 0 and x + y = 10 contain the sides of an equilateral triangle. Find the area of the triangle.
If the slope of one of the lines given by ax2 + 2hxy + by2 = 0 is three times the other, prove that 3h2 = 4ab.
Show that the line 3x + 4y + 5 = 0 and the lines (3x + 4y)2 - 3(4x - 3y)2 = 0 form the sides of an equilateral triangle.
Show that the lines x2 - 4xy + y2 = 0 and the line x + y = `sqrt6` form an equilateral triangle. Find its area and perimeter.
Prove that the product of length of perpendiculars drawn from P(x1, y1) to the lines represented by ax2 + 2hxy + by2 = 0 is `|("ax"_1^2 + "2hx"_1"y"_1 + "by"_1^2)/(sqrt("a - b")^2 + "4h"^2)|`
Show that the difference between the slopes of the lines given by (tan2θ + cos2θ)x2 - 2xy tan θ + (sin2θ)y2 = 0 is two.
The acute angle between the lines represented by x2 + xy = 0 is ______.
Find the value of h, if the measure of the angle between the lines 3x2 + 2hxy + 2y2 = 0 is 45°.
If θ is the acute angle between the lines given by ax2 + 2hxy + by2 = 0 then prove that tan θ = `|(2sqrt("h"^2) - "ab")/("a" + "b")|`. Hence find acute angle between the lines 2x2 + 7xy + 3y2 = 0
If the angle between the lines represented by ax2 + 2hxy + by2 = 0 is equal to the angle between the lines 2x2 − 5xy + 3y2 = 0, then show that 100(h2 − ab) = (a + b)2
The angle between lines `(x - 2)/2 = (y - 3)/(- 2) = (z - 5)/1` and `(x - 2)/1 = (y - 3)/2 = (z - 5)/2` is ______.
If 4ab = 3h2, then the ratio of slopes of the lines represented by the equation ax2 +2hxy + by2 = 0 will be ______
The acute angle between lines x - 3 = 0 and x + y = 19 is ______.
If the line `x/(3) = y/(4)` = z is perpendicular to the line `(x - 1)/k = (y + 2)/(3) = (z - 3)/(k - 1)`, then the value of k is ______.
The acute angle between the curve x = 2y2 and y = 2x2 at `(1/2, 1/2)` is ______.
If slopes of lines represented by kx2 + 5xy + y2 = 0 differ by 1, then k = ______.
If θ is the acute angle between the lines represented by ax2 + 2hxy + by2 = 0 then prove that tan θ = `|(2sqrt(h^2 - ab))/(a + b)|`
If θ is the acute angle between the lines given by 3x2 – 4xy + by2 = 0 and tan θ = `1/2`, find b.
If the lines represented by 5x2 – 3xy + ky2 = 0 are perpendicular to each other, find the value of k.