Advertisements
Advertisements
प्रश्न
Find the measure of the acute angle between the line represented by:
(a2 - 3b2)x2 + 8abxy + (b2 - 3a2)y2 = 0
उत्तर
Comparing the equation
(a2 - 3b2)x2 + 8abxy + (b2 - 3a2)y2 = 0 with
Ax2 + 2Hxy + by2 = 0, we have,
A = a2 - 3b2, 2H = 8ab and B = b2 - 3a2
∴ H2 - AB = (4ab)2 - (a2 - 3b2) (b2 - 3a2)
= 16a2b2 - (a2b2 - 3a4 - 3b4 + 9a2b2)
= 16a2b2 - 10a2b2 + 3a4 + 3b4
= 3a4 + 6a2b2 + 3b4
= 3(a4 + 2a2b2 + b4)
= 3(a2 + b2)2
∴ `sqrt("H"^2 - "AB") = sqrt3 ("a"^2 + "b"^2)`
Also, A + B = a2 - 3b2 + b2 - 3a2
= - 2a2 - 2b2
= - 2(a2 + b2)
Let θ be the acute angle between the lines.
∴ tan θ = `|(2 sqrt("H"^2 - "AB"))/("A + B")|`
`= |(2sqrt3("a"^2 + "b"^2))/(- 2("a"^2 + "b"^2))|`
= `sqrt3` = tan 60°
∴ θ = 60°
APPEARS IN
संबंधित प्रश्न
. Show that the lines represented by 3x2 - 4xy - 3y2 = 0 are perpendicular to each other.
Show that the lines represented by x2 + 6xy + 9y2 = 0 are coincident.
Find the value of k if lines represented by kx2 + 4xy – 4y2 = 0 are perpendicular to each other.
Find the measure of the acute angle between the line represented by:
2x2 + 7xy + 3y2 = 0
Find the measure of the acute angle between the line represented by:
4x2 + 5xy + y2 = 0
Find the combined equation of lines passing through the origin each of which making an angle of 30° with the line 3x + 2y - 11 = 0
If the angle between the lines represented by ax2 + 2hxy + by2 = 0 is equal to the angle between the lines 2x2 - 5xy + 3y2 = 0, then show that 100 (h2 - ab) = (a + b)2.
Choose correct alternatives:
If acute angle between lines ax2 + 2hxy + by2 = 0 is, `pi/4`, then 4h2 = ______.
Show that the lines x2 − 4xy + y2 = 0 and x + y = 10 contain the sides of an equilateral triangle. Find the area of the triangle.
If the slope of one of the lines given by ax2 + 2hxy + by2 = 0 is three times the other, prove that 3h2 = 4ab.
If the slope of one of the lines given by ax2 + 2hxy + by2 = 0 is square of the slope of the other line, show that a2b + ab2 + 8h3 = 6abh.
Prove that the product of length of perpendiculars drawn from P(x1, y1) to the lines represented by ax2 + 2hxy + by2 = 0 is `|("ax"_1^2 + "2hx"_1"y"_1 + "by"_1^2)/(sqrt("a - b")^2 + "4h"^2)|`
The acute angle between the lines represented by x2 + xy = 0 is ______.
Find the measure of the acute angle between the lines given by x2 − 4xy + y2 = 0
If the angle between the lines represented by ax2 + 2hxy + by2 = 0 is equal to the angle between the lines 2x2 − 5xy + 3y2 = 0, then show that 100(h2 − ab) = (a + b)2
The angle between the pair of straight lines 2x2 - 6xy + y2 = 0 is tan-1 (p), where p = ______
The acute angle between lines x - 3 = 0 and x + y = 19 is ______.
Which of the following pair of straight lines intersect at right angles?
If the line `x/(3) = y/(4)` = z is perpendicular to the line `(x - 1)/k = (y + 2)/(3) = (z - 3)/(k - 1)`, then the value of k is ______.
The acute angle between the curve x = 2y2 and y = 2x2 at `(1/2, 1/2)` is ______.
If slopes of lines represented by kx2 + 5xy + y2 = 0 differ by 1, then k = ______.
If ax2 + 2hxy + by2 = 0 represents a pair of lines and h2 = ab ≠ 0 then find the ratio of their slopes.
If θ is the acute angle between the lines represented by ax2 + 2hxy + by2 = 0 then prove that tan θ = `|(2sqrt(h^2 - ab))/(a + b)|`
Find the combined equation of the pair of lines through the origin and making an angle of 30° with the line 2x – y = 5
If the lines represented by 5x2 – 3xy + ky2 = 0 are perpendicular to each other, find the value of k.
Prove that the acute angle θ between the lines represented by the equation ax2 + 2hxy+ by2 = 0 is tanθ = `|(2sqrt(h^2 - ab))/(a + b)|` Hence find the condition that the lines are coincident.