Advertisements
Advertisements
प्रश्न
Construct the network for the project whose activities are given below.
Activity | 0 - 1 | 1 - 2 | 1 - 3 | 2 - 4 | 2 - 5 | 3 - 4 | 3 - 6 | 4 - 7 | 5 - 7 | 6 - 7 |
Duration (in week) | 3 | 8 | 12 | 6 | 3 | 3 | 8 | 5 | 3 | 8 |
Calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity. Determine the critical path and the project completion time.
उत्तर
E1 = 0 + 3 = 3
E2 = E1 + t12 = 8 + 3 = 11
E3 = 3 + 12 = 15
E4 = 15 + 3 = 18
E5 = E2 + 3 = 11 + 3 = 14
E6 = E3 + 8 = 15 + 8 = 23
E7 = E6 + 8 = 23 + 8 = 31
L7 = 31
L6 = L7 – 8 = 31 – 8 = 23
L5 = L7 – 3 = 31 – 3 = 28
L4 = L7 – 5 = 31 – 5 = 26
L3 = L6 – 8 = 23 – 8 = 15
L2 = L5 – 3 or L4 which is minimum
= (28 – 3) or (26 – 6)
= 25 or 20
= 20 (which is minimum)
L1 = L2 – 8 or L3 – 12
whichever is minimum
= (20 – 8) or (15 – 12)
= 12 or 3
= 3
L0 = 0
Activity | Duration tij |
EST | EFT = EST + tij | LST = LFT – tij | LFT |
0 - 1 | 3 | 0 | 3 | 3 | 3 |
1 - 2 | 8 | 3 | 11 | 20 – 8 = 12 | 20 |
1 - 3 | 12 | 3 | 15 | 15 – 12 = 3 | 15 |
2 - 4 | 6 | 11 | 17 | 26 – 6= 20 | 26 |
2 - 5 | 3 | 11 | 14 | 28 – 3 = 25 | 28 |
3 - 4 | 3 | 15 | 18 | 26 – 3 = 23 | 26 |
3 - 6 | 8 | 15 | 23 | 23 – 8 = 15 | 23 |
4 - 7 | 5 | 18 | 23 | 31 – 5 = 26 | 31 |
5 - 7 | 3 | 14 | 14 | 31 – 3 = 28 | 31 |
6 - 7 | 8 | 23 | 31 | 31 – 8 = 23 | 31 |
The critical path is 0 - 1 - 3 - 6 - 7 and the project completion time is 31 weeks.
APPEARS IN
संबंधित प्रश्न
Draw the network for the project whose activities with their relationships are given below:
Activities A, D, E can start simultaneously; B, C > A; G, F > D, C; H > E, F.
Draw the event oriented network for the following data:
Events | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Immediate Predecessors | - | 1 | 1 | 2, 3 | 3 | 4, 5 | 5, 6 |
Construct the network for the projects consisting of various activities and their precedence relationships are as given below:
A, B, C can start simultaneously A < F, E; B < D, C; E, D < G
Construct the network for each the projects consisting of various activities and their precedence relationships are as given below:
Activity | A | B | C | D | E | F | G | H | I | J | K |
Immediate Predecessors | - | - | - | A | B | B | C | D | E | H, I | F, G |
A project schedule has the following characteristics
Activity | 1 - 2 | 1 - 3 | 2 - 4 | 3 - 4 | 3 - 5 | 4 - 9 | 5 - 6 | 5 - 7 | 6 - 8 | 7 - 8 | 8 - 10 | 9 - 10 |
Time | 4 | 1 | 1 | 1 | 6 | 5 | 4 | 8 | 1 | 2 | 5 | 7 |
Construct the network and calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and determine the Critical path of the project and duration to complete the project.
Which of the following is not correct?
In the context of network, which of the following is not correct
The objective of network analysis is to
Draw the network diagram for the following activities.
Activity code | A | B | C | D | E | F | G |
Predecessor activity | - | - | A | A | B | C | D, E |
The following table gives the characteristics of the project
Activity | 1 - 2 | 1 - 3 | 2 - 3 | 3 - 4 | 3 - 5 | 4 - 6 | 5 - 6 | 6 - 7 |
Duration (in days) |
5 | 10 | 3 | 4 | 6 | 6 | 5 | 5 |
Draw the network for the project, calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and find the critical path. Compute the project duration.