Advertisements
Advertisements
प्रश्न
Draw the network for the project whose activities with their relationships are given below:
Activities A, D, E can start simultaneously; B, C > A; G, F > D, C; H > E, F.
उत्तर
Given: A, D, E can start simultaneously.
A < B, C; C, D < G, F; E, F < H
Working rule:
A < B, C implies activity A is the immediate predecessor of activities B and C.
i.e., for activities B and C to occur, activity ‘A’ has to be completed.
Similarly, for activities G, F to occur D and C has to completed for activity H to occur E and F has to be completed.
∵ A, D and E are independents events.
APPEARS IN
संबंधित प्रश्न
Construct the network for the projects consisting of various activities and their precedence relationships are as given below:
A, B, C can start simultaneously A < F, E; B < D, C; E, D < G
The following table gives the activities of a project and their duration in days
Activity | 1 - 2 | 1 - 3 | 2 - 3 | 2 - 4 | 3 - 4 | 3 - 5 | 4 - 5 |
Duration | 5 | 8 | 6 | 7 | 5 | 4 | 8 |
Construct the network and calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and determine the Critical path of the project and duration to complete the project.
A Project has the following time schedule
Activity | 1 - 2 | 1 - 6 | 2 - 3 | 2 - 4 | 3 - 5 | 4 - 5 | 6 - 7 | 5 - 8 | 7 - 8 |
Duration (in days) | 7 | 6 | 14 | 5 | 11 | 7 | 11 | 4 | 18 |
Construct the network and calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and determine the Critical path of the project and duration to complete the project.
The following table use the activities in a construction projects and relevant information
Activity | 1 - 2 | 1 - 3 | 2 - 3 | 2 - 4 | 3 - 4 | 4 - 5 |
Duration (in days) |
22 | 27 | 12 | 14 | 6 | 12 |
Draw the network for the project, calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and find the critical path. Compute the project duration.
The critical path of the following network is
One of the conditions for the activity (i, j) to lie on the critical path is
In constructing the network which one of the following statements is false?
The objective of network analysis is to
Network problems have the advantage in terms of project
A Project has the following time schedule
Activity | 1 - 2 | 2 - 3 | 2 - 4 | 3 - 5 | 4 - 6 | 5 - 6 |
Duration (in days) |
6 | 8 | 4 | 9 | 2 | 7 |
Draw the network for the project, calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and find the critical path. Compute the project duration.