Advertisements
Advertisements
प्रश्न
A Project has the following time schedule
Activity | 1 - 2 | 2 - 3 | 2 - 4 | 3 - 5 | 4 - 6 | 5 - 6 |
Duration (in days) |
6 | 8 | 4 | 9 | 2 | 7 |
Draw the network for the project, calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and find the critical path. Compute the project duration.
उत्तर
E1 = 0
E2 = 0 + 6 = 6
E3 = 6 + 8 = 14
E4 = 6 + 4 = 10
E5 = 14 + 9 = 23
E6 = (23 + 7) or (10 + 2)
Whichever is maximum
= 30
L6 = 30
L5 = 30 − 6 = 24
L4 = 30 − 2 = 28
L3 = 23 − 9 = 14
L2 = (14 − 8) or (28 − 4)
Whichever is minimum
= 6
L1 = 6 − 6 = 0
Activity | Duration tij |
EST | EFT = EST + tij | LST = LFT – tij | LFT |
1 - 2 | 6 | 0 | 6 | 6 − 6 = 0 | 6 |
2 - 3 | 8 | 6 | 14 | 14 − 8 = 6 | 14 |
2 - 4 | 4 | 6 | 10 | 28 − 4 = 24 | 28 |
3 - 5 | 9 | 14 | 23 | 23 − 9 = 14 | 23 |
4 - 6 | 2 | 10 | 22 | 30 − 28 = 2 | 4 |
5 - 6 | 7 | 23 | 30 | 30 − 7 = 23 | 30 |
Since EFT and LFT values are same in 1 - 2, 2 - 3, 3 - 5 and 5 - 6.
Hence the critical path is 1 - 2 - 3 - 5 - 6 and the duration of time taken is 30 days.
APPEARS IN
संबंधित प्रश्न
Draw the network for the project whose activities with their relationships are given below:
Activities A, D, E can start simultaneously; B, C > A; G, F > D, C; H > E, F.
Construct the network for the projects consisting of various activities and their precedence relationships are as given below:
A, B, C can start simultaneously A < F, E; B < D, C; E, D < G
Construct the network for each the projects consisting of various activities and their precedence relationships are as given below:
Activity | A | B | C | D | E | F | G | H | I | J | K |
Immediate Predecessors | - | - | - | A | B | B | C | D | E | H, I | F, G |
A project schedule has the following characteristics
Activity | 1 - 2 | 1 - 3 | 2 - 4 | 3 - 4 | 3 - 5 | 4 - 9 | 5 - 6 | 5 - 7 | 6 - 8 | 7 - 8 | 8 - 10 | 9 - 10 |
Time | 4 | 1 | 1 | 1 | 6 | 5 | 4 | 8 | 1 | 2 | 5 | 7 |
Construct the network and calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and determine the Critical path of the project and duration to complete the project.
The following table gives the activities of a project and their duration in days
Activity | 1 - 2 | 1 - 3 | 2 - 3 | 2 - 4 | 3 - 4 | 3 - 5 | 4 - 5 |
Duration | 5 | 8 | 6 | 7 | 5 | 4 | 8 |
Construct the network and calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and determine the Critical path of the project and duration to complete the project.
A Project has the following time schedule
Activity | 1 - 2 | 1 - 6 | 2 - 3 | 2 - 4 | 3 - 5 | 4 - 5 | 6 - 7 | 5 - 8 | 7 - 8 |
Duration (in days) | 7 | 6 | 14 | 5 | 11 | 7 | 11 | 4 | 18 |
Construct the network and calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and determine the Critical path of the project and duration to complete the project.
In constructing the network which one of the following statements is false?
Which of the following is not correct?
In the context of network, which of the following is not correct
The objective of network analysis is to