Advertisements
Advertisements
प्रश्न
The following table use the activities in a construction projects and relevant information
Activity | 1 - 2 | 1 - 3 | 2 - 3 | 2 - 4 | 3 - 4 | 4 - 5 |
Duration (in days) |
22 | 27 | 12 | 14 | 6 | 12 |
Draw the network for the project, calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and find the critical path. Compute the project duration.
उत्तर
E1 = 0
E2 = 22 + 0 = 22
E3 = (0 + 27) or (22 + 12)
Whichever is maximum
E3 = 34
E4 = (22 + 14) or (34 + 6)
Whichever is maximum
E4 = 40
E5 = 40 + 12 = 52
L5 = 32
L4 = 52 – 12 = 40
L3 = 40 – 6 = 34
L2 = (40 – 14) or (34 – 12)
whichever is minimum
= 22
L1 = 22 – 22 = 0
Activity | Duration tij |
EST | EFT = EST + tij | LST = LFT – tij | LFT |
1 - 2 | 22 | 0 | 22 | 22 – 22 = 0 | 22 |
1 - 3 | 27 | 0 | 27 | 34 – 27 = 7 | 34 |
2 - 3 | 12 | 22 | 34 | 34 – 12 = 26 | 34 |
2 - 4 | 14 | 22 | 36 | 40 – 14 = 26 | 40 |
3 - 4 | 6 | 34 | 40 | 40 – 6 = 34 | 40 |
4 - 5 | 12 | 40 | 52 | 52 – 12 = 40 | 52 |
Since EFT and LFT are same in 1 - 2, 2 - 3, 3 - 4 and 4 - 5.
Hence the critical path is 1 - 2 - 3 - 4 - 5 and the duration of time taken is 52 days.
APPEARS IN
संबंधित प्रश्न
Draw the event oriented network for the following data:
Events | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Immediate Predecessors | - | 1 | 1 | 2, 3 | 3 | 4, 5 | 5, 6 |
Construct the network for each the projects consisting of various activities and their precedence relationships are as given below:
Activity | A | B | C | D | E | F | G | H | I | J | K |
Immediate Predecessors | - | - | - | A | B | B | C | D | E | H, I | F, G |
Construct the network for the project whose activities are given below.
Activity | 0 - 1 | 1 - 2 | 1 - 3 | 2 - 4 | 2 - 5 | 3 - 4 | 3 - 6 | 4 - 7 | 5 - 7 | 6 - 7 |
Duration (in week) | 3 | 8 | 12 | 6 | 3 | 3 | 8 | 5 | 3 | 8 |
Calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity. Determine the critical path and the project completion time.
A project schedule has the following characteristics
Activity | 1 - 2 | 1 - 3 | 2 - 4 | 3 - 4 | 3 - 5 | 4 - 9 | 5 - 6 | 5 - 7 | 6 - 8 | 7 - 8 | 8 - 10 | 9 - 10 |
Time | 4 | 1 | 1 | 1 | 6 | 5 | 4 | 8 | 1 | 2 | 5 | 7 |
Construct the network and calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and determine the Critical path of the project and duration to complete the project.
Draw the network and calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and determine the Critical path of the project and duration to complete the project.
Jobs | 1 - 2 | 1 - 3 | 2 - 4 | 3 - 4 | 3 - 5 | 4 - 5 | 4 - 6 | 5 - 6 |
Duration | 6 | 5 | 10 | 3 | 4 | 6 | 2 | 9 |
The critical path of the following network is
One of the conditions for the activity (i, j) to lie on the critical path is
In a network while numbering the events which one of the following statements is false?
In the context of network, which of the following is not correct
The following table gives the characteristics of the project
Activity | 1 - 2 | 1 - 3 | 2 - 3 | 3 - 4 | 3 - 5 | 4 - 6 | 5 - 6 | 6 - 7 |
Duration (in days) |
5 | 10 | 3 | 4 | 6 | 6 | 5 | 5 |
Draw the network for the project, calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and find the critical path. Compute the project duration.