हिंदी

D, E and F are respectively the mid-points of the sides BC, CA and AB of a ΔABC. Show that - Mathematics

Advertisements
Advertisements

प्रश्न

D, E and F are respectively the mid-points of the sides BC, CA and AB of a ΔABC. Show that

(i) BDEF is a parallelogram.

(ii) ar (DEF) = 1/4ar (ABC)

(iii) ar (BDEF) = 1/2ar (ABC)

उत्तर

(i) In ΔABC,

E and F are the mid-points of side AC and AB respectively.

Therefore, EF || BC and EF = 1/2BC (Mid-point theorem)

However, BD = 1/2BC (D is the mid-point of BC)

Therefore, BD = EF and BD || EF

Therefore, BDEF is a parallelogram.

 

(ii) Using the result obtained above, it can be said that quadrilaterals BDEF, DCEF, AFDE are parallelograms.

We know that diagonal of a parallelogram divides it into two triangles of equal area.

∴Area (ΔBFD) = Area (ΔDEF) (For parallelogram BD)

Area (ΔCDE) = Area (ΔDEF) (For parallelogram DCEF)

Area (ΔAFE) = Area (ΔDEF) (For parallelogram AFDE)

∴Area (ΔAFE) = Area (ΔBFD) = Area (ΔCDE) = Area (ΔDEF)

Also,

Area (ΔAFE) + Area (ΔBDF) + Area (ΔCDE) + Area (ΔDEF) = Area (ΔABC)

⇒ Area (ΔDEF) + Area (ΔDEF) + Area (ΔDEF) + Area (ΔDEF) = Area (ΔABC)

⇒ 4 Area (ΔDEF) = Area (ΔABC)

⇒ Area (ΔDEF) = 1/4Area (ΔABC)

 

(iii) Area (parallelogram BDEF) = Area (ΔDEF) + Area (ΔBDF)

⇒ Area (parallelogram BDEF) = Area (ΔDEF) + Area (ΔDEF)

⇒ Area (parallelogram BDEF) = 2 Area (ΔDEF)

⇒ Area (parallelogram BDEF)`= 2xx1/4"Area "(ΔABC)`

⇒ Area (parallelogram BDEF) = 1/2Area (ΔABC)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Areas of Parallelograms and Triangles - Exercise 9.3 [पृष्ठ १६३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
अध्याय 9 Areas of Parallelograms and Triangles
Exercise 9.3 | Q 5 | पृष्ठ १६३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

In the given figure, diagonals AC and BD of quadrilateral ABCD intersect at O such that OB = OD. If AB = CD, then show that:

(i) ar (DOC) = ar (AOB)

(ii) ar (DCB) = ar (ACB)

(iii) DA || CB or ABCD is a parallelogram.

[Hint: From D and B, draw perpendiculars to AC.]


ABCD is a trapezium with AB || DC. A line parallel to AC intersects AB at X and BC at Y. Prove that ar (ADX) = ar (ACY). 

[Hint: Join CX.]


In the following figure, ABC and BDE are two equilateral triangles such that D is the mid-point of BC. If AE intersects BC at F, show that

(i) ar (BDE) = 1/4 ar (ABC)

(ii) ar (BDE) = 1/2 ar (BAE)

(iii) ar (ABC) = 2 ar (BEC)

(iv) ar (BFE) = ar (AFD)

(v) ar (BFE) = 2 ar (FED)

(vi) ar (FED) = 1/8 ar (AFC)

[Hint : Join EC and AD. Show that BE || AC and DE || AB, etc.]


Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that ar (APB) × ar (CPD) = ar (APD) × ar (BPC).

[Hint : From A and C, draw perpendiculars to BD.]


In the following figure, ABC is a right triangle right angled at A. BCED, ACFG and ABMN are squares on the sides BC, CA and AB respectively. Line segment AX ⊥ DE meets BC at Y. Show that:-

(i) ΔMBC ≅ ΔABD

(ii) ar (BYXD) = 2 ar(MBC)

(iii) ar (BYXD) = ar(ABMN)

(iv) ΔFCB ≅ ΔACE

(v) ar(CYXE) = 2 ar(FCB)

(vi) ar (CYXE) = ar(ACFG)

(vii) ar (BCED) = ar(ABMN) + ar(ACFG)

Note : Result (vii) is the famous Theorem of Pythagoras. You shall learn a simpler proof of this theorem in Class X.


ABCD is a parallelogram and X is the mid-point of AB. If ar (AXCD) = 24 cm2, then ar (ABC) = 24 cm2.


The area of the parallelogram ABCD is 90 cm2 (see figure). Find

  1. ar (ΔABEF)
  2. ar (ΔABD)
  3. ar (ΔBEF)


In the following figure, CD || AE and CY || BA. Prove that ar (CBX) = ar (AXY).


In the following figure, ABCDE is any pentagon. BP drawn parallel to AC meets DC produced at P and EQ drawn parallel to AD meets CD produced at Q. Prove that ar (ABCDE) = ar (APQ)


If the medians of a ∆ABC intersect at G, show that ar (AGB) = ar (AGC) = ar (BGC) = `1/3` ar (ABC)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×