हिंदी

Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that ar (APB) × ar (CPD) = ar (APD) × ar (BPC). - Mathematics

Advertisements
Advertisements

प्रश्न

Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that ar (APB) × ar (CPD) = ar (APD) × ar (BPC).

[Hint : From A and C, draw perpendiculars to BD.]

उत्तर

Let us draw AM ⊥ BD and CN ⊥ BD

`"Area of a triangle "=1/2xx"Base"xx"Altitude"`

`ar(APB)xxar(CPD)=[1/2xxBPxxAM]xx[1/2xxPDxxCN]`

                                  `=1/4xxBPxxAMxxPDxxCN`

`ar(APD)xxar(BPC)=[1/2xxPDxxAM]xx[1/2xxCNxxBP]`

                                  `=1/4xxPDxxAMxxCNxxBP`

                                  `=1/4xxBPxxAMxxPDxxCN`

∴ ar (APB) × ar (CPD) = ar (APD) × ar (BPC)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Areas of Parallelograms and Triangles - Exercise 9.4 [पृष्ठ १६६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
अध्याय 9 Areas of Parallelograms and Triangles
Exercise 9.4 | Q 6 | पृष्ठ १६६

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×