English

Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that ar (APB) × ar (CPD) = ar (APD) × ar (BPC). - Mathematics

Advertisements
Advertisements

Question

Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that ar (APB) × ar (CPD) = ar (APD) × ar (BPC).

[Hint : From A and C, draw perpendiculars to BD.]

Solution

Let us draw AM ⊥ BD and CN ⊥ BD

`"Area of a triangle "=1/2xx"Base"xx"Altitude"`

`ar(APB)xxar(CPD)=[1/2xxBPxxAM]xx[1/2xxPDxxCN]`

                                  `=1/4xxBPxxAMxxPDxxCN`

`ar(APD)xxar(BPC)=[1/2xxPDxxAM]xx[1/2xxCNxxBP]`

                                  `=1/4xxPDxxAMxxCNxxBP`

                                  `=1/4xxBPxxAMxxPDxxCN`

∴ ar (APB) × ar (CPD) = ar (APD) × ar (BPC)

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Areas of Parallelograms and Triangles - Exercise 9.4 [Page 166]

APPEARS IN

NCERT Mathematics [English] Class 9
Chapter 9 Areas of Parallelograms and Triangles
Exercise 9.4 | Q 6 | Page 166

RELATED QUESTIONS

In a triangle ABC, E is the mid-point of median AD. Show that ar (BED) = 1/4ar (ABC).


In the given figure, ABC and ABD are two triangles on the same base AB. If line-segment CD is bisected by AB at O, show that ar (ABC) = ar (ABD).


D and E are points on sides AB and AC respectively of ΔABC such that

ar (DBC) = ar (EBC). Prove that DE || BC.


In the given figure, ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F. Show that

(i) ar (ACB) = ar (ACF)

(ii) ar (AEDF) = ar (ABCDE)


In the given figure, AP || BQ || CR. Prove that ar (AQC) = ar (PBR).


In the following figure, ABC is a right triangle right angled at A. BCED, ACFG and ABMN are squares on the sides BC, CA and AB respectively. Line segment AX ⊥ DE meets BC at Y. Show that:-

(i) ΔMBC ≅ ΔABD

(ii) ar (BYXD) = 2 ar(MBC)

(iii) ar (BYXD) = ar(ABMN)

(iv) ΔFCB ≅ ΔACE

(v) ar(CYXE) = 2 ar(FCB)

(vi) ar (CYXE) = ar(ACFG)

(vii) ar (BCED) = ar(ABMN) + ar(ACFG)

Note : Result (vii) is the famous Theorem of Pythagoras. You shall learn a simpler proof of this theorem in Class X.


X and Y are points on the side LN of the triangle LMN such that LX = XY = YN. Through X, a line is drawn parallel to LM to meet MN at Z (See figure). Prove that ar (LZY) = ar (MZYX)


The area of the parallelogram ABCD is 90 cm2 (see figure). Find ar (ΔBEF)


The medians BE and CF of a triangle ABC intersect at G. Prove that the area of ∆GBC = area of the quadrilateral AFGE.


If the medians of a ∆ABC intersect at G, show that ar (AGB) = ar (AGC) = ar (BGC) = `1/3` ar (ABC)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×