English

In the given figure, AP || BQ || CR. Prove that ar (AQC) = ar (PBR). - Mathematics

Advertisements
Advertisements

Question

In the given figure, AP || BQ || CR. Prove that ar (AQC) = ar (PBR).

Solution

Since ΔABQ and ΔPBQ lie on the same base BQ and are between the same parallels AP and BQ,

∴ Area (ΔABQ) = Area (ΔPBQ) ... (1)

Again, ΔBCQ and ΔBRQ lie on the same base BQ and are between the same parallels BQ and CR.

∴ Area (ΔBCQ) = Area (ΔBRQ) ... (2)

On adding equations (1) and (2), we obtain

Area (ΔABQ) + Area (ΔBCQ) = Area (ΔPBQ) + Area (ΔBRQ)

⇒ Area (ΔAQC) = Area (ΔPBR)

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Areas of Parallelograms and Triangles - Exercise 9.3 [Page 164]

APPEARS IN

NCERT Mathematics [English] Class 9
Chapter 9 Areas of Parallelograms and Triangles
Exercise 9.3 | Q 14 | Page 164

RELATED QUESTIONS

D, E and F are respectively the mid-points of the sides BC, CA and AB of a ΔABC. Show that

(i) BDEF is a parallelogram.

(ii) ar (DEF) = 1/4ar (ABC)

(iii) ar (BDEF) = 1/2ar (ABC)


Diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at O. Prove that ar (AOD) = ar (BOC).


Diagonals AC and BD of a quadrilateral ABCD intersect at O in such a way that ar (AOD) = ar (BOC). Prove that ABCD is a trapezium.


In the following figure, ABC and BDE are two equilateral triangles such that D is the mid-point of BC. If AE intersects BC at F, show that

(i) ar (BDE) = 1/4 ar (ABC)

(ii) ar (BDE) = 1/2 ar (BAE)

(iii) ar (ABC) = 2 ar (BEC)

(iv) ar (BFE) = ar (AFD)

(v) ar (BFE) = 2 ar (FED)

(vi) ar (FED) = 1/8 ar (AFC)

[Hint : Join EC and AD. Show that BE || AC and DE || AB, etc.]


P and Q are respectively the mid-points of sides AB and BC of a triangle ABC and R is the mid-point of AP, show that

(i) ar(PRQ) = 1/2 ar(ARC)

(ii) ar(RQC) = 3/8 ar(ABC)

(iii) ar(PBQ) = ar(ARC)


In Fig. below, ABC and BDE are two equilateral triangles such that D is the mid-point of
BC. AE intersects BC in F. Prove that

(1)  ar (Δ BDE) = `1/2` ar (ΔABC) 

(2) Area ( ΔBDE) `= 1/2 ` ar (ΔBAE)

(3)  ar (BEF) = ar (ΔAFD)

(4) area (Δ ABC) = 2 area (ΔBEC)

(5) ar (ΔFED) `= 1/8` ar (ΔAFC) 

(6) ar (Δ BFE) = 2 ar (ΔEFD)


If a triangle and a parallelogram are on the same base and between same parallels, then the ratio of the area of the triangle to the area of parallelogram is ______.


PQRS is a parallelogram whose area is 180 cm2 and A is any point on the diagonal QS. The area of ∆ASR = 90 cm2.


O is any point on the diagonal PR of a parallelogram PQRS (Figure). Prove that ar (PSO) = ar (PQO).


In ∆ABC, if L and M are the points on AB and AC, respectively such that LM || BC. Prove that ar (LOB) = ar (MOC)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×