हिंदी

In the given figure, AP || BQ || CR. Prove that ar (AQC) = ar (PBR). - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, AP || BQ || CR. Prove that ar (AQC) = ar (PBR).

उत्तर

Since ΔABQ and ΔPBQ lie on the same base BQ and are between the same parallels AP and BQ,

∴ Area (ΔABQ) = Area (ΔPBQ) ... (1)

Again, ΔBCQ and ΔBRQ lie on the same base BQ and are between the same parallels BQ and CR.

∴ Area (ΔBCQ) = Area (ΔBRQ) ... (2)

On adding equations (1) and (2), we obtain

Area (ΔABQ) + Area (ΔBCQ) = Area (ΔPBQ) + Area (ΔBRQ)

⇒ Area (ΔAQC) = Area (ΔPBR)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Areas of Parallelograms and Triangles - Exercise 9.3 [पृष्ठ १६४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
अध्याय 9 Areas of Parallelograms and Triangles
Exercise 9.3 | Q 14 | पृष्ठ १६४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

XY is a line parallel to side BC of a triangle ABC. If BE || AC and CF || AB meet XY at E and F respectively, show that

ar (ABE) = ar (ACF)


The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q and then parallelogram PBQR is completed (see the following figure). Show that

ar (ABCD) = ar (PBQR).

[Hint: Join AC and PQ. Now compare area (ACQ) and area (APQ)]


In the given figure, ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F. Show that

(i) ar (ACB) = ar (ACF)

(ii) ar (AEDF) = ar (ABCDE)


In the following figure, ABC and BDE are two equilateral triangles such that D is the mid-point of BC. If AE intersects BC at F, show that

(i) ar (BDE) = 1/4 ar (ABC)

(ii) ar (BDE) = 1/2 ar (BAE)

(iii) ar (ABC) = 2 ar (BEC)

(iv) ar (BFE) = ar (AFD)

(v) ar (BFE) = 2 ar (FED)

(vi) ar (FED) = 1/8 ar (AFC)

[Hint : Join EC and AD. Show that BE || AC and DE || AB, etc.]


If a triangle and a parallelogram are on the same base and between same parallels, then the ratio of the area of the triangle to the area of parallelogram is ______.


The area of the parallelogram ABCD is 90 cm2 (see figure). Find

  1. ar (ΔABEF)
  2. ar (ΔABD)
  3. ar (ΔBEF)


The area of the parallelogram ABCD is 90 cm2 (see figure). Find ar (ΔBEF)


A point E is taken on the side BC of a parallelogram ABCD. AE and DC are produced to meet at F. Prove that ar (ADF) = ar (ABFC)


The medians BE and CF of a triangle ABC intersect at G. Prove that the area of ∆GBC = area of the quadrilateral AFGE.


In ∆ABC, if L and M are the points on AB and AC, respectively such that LM || BC. Prove that ar (LOB) = ar (MOC)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×