Advertisements
Advertisements
प्रश्न
Determine the following polynomial has (x + 1) a factor:
x4 + x3 + x2 + x + 1
उत्तर
If (x + 1) is a factor of p(x) = x4 + x3 + x2 + x + 1, then p (−1) must be zero, as a result (x + 1) is not a factor of p(x).
p(x) = x4 + x3 + x2 + x + 1
p(−1) = (−1)4 + (−1)3 + (−1)2 + (−1) + 1
= 1 − 1 + 1 − 1 + 1
= 1
As p(−1) ≠ 0,
Therefore, x + 1 is not a factor of this polynomial.
APPEARS IN
संबंधित प्रश्न
Factorize the following polynomial.
(x2 – x)2 – 8 (x2 – x) + 12
Factorize the following polynomial.
(y + 2) (y – 3) (y + 8) (y + 3) + 56
One of the factors of (25x2 – 1) + (1 + 5x)2 is ______.
Show that x + 3 is a factor of 69 + 11x – x2 + x3.
Determine which of the following polynomials has x – 2 a factor:
3x2 + 6x – 24
Show that p – 1 is a factor of p10 – 1 and also of p11 – 1.
Find the value of m so that 2x – 1 be a factor of 8x4 + 4x3 – 16x2 + 10x + m.
Factorise:
2x2 – 7x – 15
Factorise:
1 + 64x3
Find the following product:
(2x – y + 3z)(4x2 + y2 + 9z2 + 2xy + 3yz – 6xz)