Advertisements
Advertisements
प्रश्न
Determine the values of a and b so that the following matrices are singular:
A = `[(7, 3),(-2, "a")]`
उत्तर
A = `[(7, 3),(-2, "a")]`
|A| = `[(7, 3),(-2, "a")]`
|A| = 7a + 6
Given that A is singular
∴ |A| = 0
7a + 6 = 0
⇒ a = `(-6)/7`
APPEARS IN
संबंधित प्रश्न
Prove that `|(sec^2theta, tan^2theta, 1),(tan^2theta, sec^2theta, -1),(38, 36, 2)|` = 0
Show that `|(x + 2"a", y + 2"b", z + 2"c"),(x, y, z),("a", "b", "c")|` = 0
Prove that `|(1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")|` = 0
Without expanding, evaluate the following determinants:
`|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|`
If A is a Square, matrix, and |A| = 2, find the value of |A AT|
Show that `|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + b")|` = 8abc
Show that `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)
Solve `|(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0
Identify the singular and non-singular matrices:
`[(2, -3, 5),(6, 0, 4),(1, 5, -7)]`
Identify the singular and non-singular matrices:
`[(0, "a" - "b", "k"),("b" - "a", 0, 5),(-"k", -5, 0)]`
If cos 2θ = 0, determine `[(theta, costheta, sintheta),(costheta, sintheta, 0),(sintheta, 0, costheta)]^2`
Find the value of the product: `|(log_3 64, log_4 3),(log_3 8, log_4 9)| xx |(log_2 3, log_8 3),(log_3 4, log_3 4)|`
Choose the correct alternative:
if Δ = `|("a", "b", "c"),(x, y, z),("p", "q", "r")|` then `|("ka", "kb","kc"),("k"x, "k"y, "k"z),("kp", "kq", "kr")|` is
If P1, P2, P3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then `cosA/P_1 + cosB/P_2 + cosC/P_3` is equal to
If f(x) = `|(cos^2x, cosx.sinx, -sinx),(cosx sinx, sin^2x, cosx),(sinx, -cosx, 0)|`, then for all x
What is the value of Δ if, Δ = `|(0, sin alpha, - cos alpha),(-sin alpha, 0, sin beta),(cos alpha, - sin beta, 0)|`
Let a, b, c, d be in arithmetic progression with common difference λ. If `|(x + a - c, x + b, x + a),(x - 1, x + c, x + b),(x - b + d, x + d, x + c)|` = 2, then value of λ2 is equal to ______.
If `|(1 + x, x, x^2),(x, 1 + x, x^2),(x^2, x, 1 + x)|` = ax5 + bx4 + cx3 + dx2 + λx + µ be an identity in x, where a, b, c, d, λ, µ are independent of x. Then the value of λ is ______.
If `x∈R|(8, 2, x),(2, x, 8),(x, 8, 2)|` = 0, then `|x/2|` is equal to ______.