Advertisements
Advertisements
प्रश्न
Show that `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)
उत्तर
Let |A| = `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|`
Put a = b in |A|
|A| = `|("b" + "c", "b", "b"^2),("c" + "b", "b", "b"^2),("b" + "b", "c", "c"^2)|`
|A| = `|("b" + "c", "b", "b"^2),("b" + "c", "b", "b"^2),("b" + "b", "c", "c"^2)|`
Since two rows are idenctical
|A| = 0
Since two rows are idenctical
|A| = 0
∴ a – b is a factor of |A|.
The given determinant is in cyclic symmetric form in a, b and c.
Therefore, b – c and c – a are also factors.
The degree of the product of the factors (a – b)(b – c)(c – a) is 3 and the degree of the product of the leading diagonal elements (b + c) . b . c2 is 4.
Therefore, the other factor is k(a + b + c).
`|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = k(a + b + c)(a – b) × (b – c)(c – a)
Put a = 1, b = 2, c = 3 we get
`|(2 +3, 1, 1^2),(3 + 1, 2, 2^2),(1 + 2, 3, 3^2)|` = k(1 + 2 + 3)(1 – 2) × (2 – 3)(3 – 1)
`|(5, 1, 1),(4, 2, 4),(3, 3, 9)|` = k × 6 × –1 × –1 × 2
5(18 – 12) – 1(36 – 12) + 1(12 – 6) = 12k
5 × 6 – 24 + 6 = 12k
30 – 24 + 6 = 12k
12 = 12
⇒ k = 1
∴ `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)
APPEARS IN
संबंधित प्रश्न
Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`
Write the general form of a 3 × 3 skew-symmetric matrix and prove that its determinant is 0
If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`
Find the value of `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` if x, y, z ≠ 1
If A is a Square, matrix, and |A| = 2, find the value of |A AT|
If A and B are square matrices of order 3 such that |A| = –1 and |B| = 3, find the value of |3AB|
If λ = – 2, determine the value of `|(0, lambda, 1),(lambda^2, 0, 3lambda^2 + 1),(-1, 6lambda - 1, 0)|`
Solve `|(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0
Show that `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)
Find the area of the triangle whose vertices are (0, 0), (1, 2) and (4, 3)
If (k, 2), (2, 4) and (3, 2) are vertices of the triangle of area 4 square units then determine the value of k
Find the value of the product: `|(log_3 64, log_4 3),(log_3 8, log_4 9)| xx |(log_2 3, log_8 3),(log_3 4, log_3 4)|`
Choose the correct alternative:
The value of x, for which the matrix A = `[("e"^(x - 2), "e"^(7 + x)),("e"^(2 + x), "e"^(2x + 3))]` is singular
Choose the correct alternative:
if Δ = `|("a", "b", "c"),(x, y, z),("p", "q", "r")|` then `|("ka", "kb","kc"),("k"x, "k"y, "k"z),("kp", "kq", "kr")|` is
Choose the correct alternative:
The value of the determinant of A = `[(0, "a", -"b"),(-"a", 0, "c"),("b", -"c", 0)]` is
A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the
Let a, b, c, d be in arithmetic progression with common difference λ. If `|(x + a - c, x + b, x + a),(x - 1, x + c, x + b),(x - b + d, x + d, x + c)|` = 2, then value of λ2 is equal to ______.
`|("b" + "c", "c", "b"),("c", "c" + "a", "a"),("b", "a", "a" + "b")|` = ______.
If a, b, c, are non zero complex numbers satisfying a2 + b2 + c2 = 0 and `|(b^2 + c^2, ab, ac),(ab, c^2 + a^2, bc),(ac, bc, a^2 + b^2)|` = ka2b2c2, then k is equal to ______.