मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Show that bCaacabbabcc|b+Caa2c+abb2a+bcc2| = (a + b + c)(a – b)(b – c)(c – a) - Mathematics

Advertisements
Advertisements

प्रश्न

Show that `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)

बेरीज

उत्तर

Let |A| = `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` 

Put a = b in |A|

|A| = `|("b" + "c", "b", "b"^2),("c" + "b", "b", "b"^2),("b" + "b", "c", "c"^2)|`

|A| = `|("b" + "c", "b", "b"^2),("b" + "c", "b", "b"^2),("b" + "b", "c", "c"^2)|`

Since two rows are idenctical

|A| = 0

Since two rows are idenctical

|A| = 0

∴ a – b is a factor of |A|.

The given determinant is in cyclic symmetric form in a, b and c.

Therefore, b – c and c – a are also factors.

The degree of the product of the factors (a – b)(b – c)(c – a) is 3 and the degree of the product of the leading diagonal elements (b + c) . b . c2 is 4.

Therefore, the other factor is k(a + b + c).

 `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = k(a + b + c)(a – b) × (b – c)(c – a)

Put a = 1, b = 2, c = 3 we get

`|(2 +3, 1, 1^2),(3 + 1, 2, 2^2),(1 + 2, 3, 3^2)|` = k(1 + 2 + 3)(1 – 2) × (2 – 3)(3 – 1)

`|(5, 1, 1),(4, 2, 4),(3, 3, 9)|` = k × 6 ×  –1 × –1 × 2

5(18 – 12) – 1(36 – 12) + 1(12 – 6) = 12k

5 × 6 – 24 + 6 = 12k

30 – 24 + 6 = 12k

12 = 12

⇒ k = 1

∴ `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)

shaalaa.com
Determinants
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Matrices and Determinants - Exercise 7.3 [पृष्ठ ३४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 7 Matrices and Determinants
Exercise 7.3 | Q 4 | पृष्ठ ३४

संबंधित प्रश्‍न

Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`


Prove that `|(1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")|` = 0


Show that `|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|` is divisiible by x


Without expanding, evaluate the following determinants:

`|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|`


If λ = – 2, determine the value of `|(0, lambda, 1),(lambda^2, 0, 3lambda^2 + 1),(-1, 6lambda - 1, 0)|`


Verify that det(AB) = (det A)(det B) for A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]` and B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`


Solve that `|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0


Identify the singular and non-singular matrices:

`[(1, 2, 3),(4, 5, 6),(7, 8, 9)]`


Find the value of the product: `|(log_3 64, log_4 3),(log_3 8, log_4 9)| xx |(log_2 3, log_8 3),(log_3 4, log_3 4)|`


Choose the correct alternative:
The value of x, for which the matrix A = `[("e"^(x - 2), "e"^(7 + x)),("e"^(2 + x), "e"^(2x + 3))]` is singular


Choose the correct alternative:
If x1, x2, x3 as well as y1, y2, y3 are in geometric progression with the same common ratio, then the points (x1, y1), (x2, y2), (x3, y3) are


Choose the correct alternative:
If ⌊.⌋ denotes the greatest integer less than or equal to the real number under consideration and – 1 ≤ x < 0, 0 ≤ y < 1, 1 ≤ z ≤ 2, then the value of the determinant `[([x] + 1, [y], [z]),([x], [y] + 1, [z]),([x], [y], [z] + 1)]`


The remainder obtained when 1! + 2! + 3! + ......... + 10! is divided by 6 is,


If Δ is the area and 2s the sum of three sides of a triangle, then


A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the


What is the value of Δ if, Δ = `|(0, sin alpha, - cos alpha),(-sin alpha, 0, sin beta),(cos alpha, - sin beta, 0)|` 


Find the area of the triangle with vertices at the point given is (1, 0), (6, 0), (4, 3).


If `|(1 + x, x, x^2),(x, 1 + x, x^2),(x^2, x, 1 + x)|` = ax5 + bx4 + cx3 + dx2 + λx + µ be an identity in x, where a, b, c, d, λ, µ are independent of x. Then the value of λ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×