मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Find the value of the product: |log364log43log38log49|×|log23log83log34log34| - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of the product: `|(log_3 64, log_4 3),(log_3 8, log_4 9)| xx |(log_2 3, log_8 3),(log_3 4, log_3 4)|`

बेरीज

उत्तर

`|(log_3 64, log_4 3),(log_3 8, log_4 9)| xx |(log_2 3, log_8 3),(log_3 4, log_3 4)| = |(log_3 64 * log_2 3 + log_4 3 * log_3 4, log_3 64 * log_8 3 + log_4 3 * log_3 4),(log_3 8 * log_2 3 + log_4 9 * log_3 4, log_2 8 * log_8 3 +log_4 9 * log_3 4)|`

= `|(log_2 64 + log_3 3, log_8 64 +  log_3 3),(log_2 8 +log_3 9, log_8 8 + log_3 9)|`

`log_"b" "a" * log_"c" "b" = log_"c" "a"`

⇒ `log_"a" "a"` = 1

= `|(log_2 2^6 + 1, log_8 8^2 + 1),(log_2 2^3 + log_3 3^2, 1 + log_3 3^2)|`

= `|(6log_2 2 + 1, 2log_8 8 + 1),(3log_2 2 + 2log_3 3, 1 + 2log_3 3)|`

= `|(6 + 1, 2 + 1),(3 + 2, 1 + 2)|`

= `|(7, 3),(5, 3)|`

= 21 – 15

= 6

shaalaa.com
Determinants
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Matrices and Determinants - Exercise 7.4 [पृष्ठ ४०]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 7 Matrices and Determinants
Exercise 7.4 | Q 6 | पृष्ठ ४०

संबंधित प्रश्‍न

Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`


Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`


If `|("a", "b", "a"alpha + "b"),("b", "c", "b"alpha + "c"),("a"alpha + "b", "b"alpha + "c", 0)|` = 0, prove that a, b, c are in G. P or α is a root of ax2 + 2bx + c = 0


If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`


If A = `[(1/2, alpha),(0, 1/2)]`, prove that `sum_("k" = 1)^"n" det("A"^"k") = 1/3(1 - 1/4)` 


Verify that det(AB) = (det A)(det B) for A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]` and B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`


Solve the following problems by using Factor Theorem:

Show that `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|` = (x – a)2 (x + 2a)


Solve that `|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0


Solve `|(4 - x, 4 + x, 4 +  x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0


Show that `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)


Find the area of the triangle whose vertices are (0, 0), (1, 2) and (4, 3)


Choose the correct alternative:
If A = `[("a", x),(y, "a")]` and if xy = 1, then det(AAT) is equal to


Choose the correct alternative:
The value of x, for which the matrix A = `[("e"^(x - 2), "e"^(7 + x)),("e"^(2 + x), "e"^(2x + 3))]` is singular


Choose the correct alternative:
If `|(2"a", x_1, y_1),(2"b", x_2, y_2),(2"c", x_3, y_3)| = "abc"/2 ≠ 0`, then the area of the triangle whose vertices are `(x_1/"a", y_1/"a"), (x_2/"b", y_2/"b"), (x_3/"c", y_3/"c")` is


Find the area of the triangle with vertices at the point given is (1, 0), (6, 0), (4, 3).


Choose the correct option:

Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then


For f(x)= `ℓn|x + sqrt(x^2 + 1)|`, then the value of`g(x) = (cosx)^((cosecx - 1))` and `h(x) = (e^x - e^-x)/(e^x + e^-x)`, then the value of `|(f(0), f(e), g(π/6)),(f(-e), h(0), h(π)),(g((5π)/6), h(-π), f(f(f(0))))|` is ______.


If `|(1 + x, x, x^2),(x, 1 + x, x^2),(x^2, x, 1 + x)|` = ax5 + bx4 + cx3 + dx2 + λx + µ be an identity in x, where a, b, c, d, λ, µ are independent of x. Then the value of λ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×