मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Verify that det(AB) = (det A)(det B) for A = [43-210723-5] and B = [133-240975] - Mathematics

Advertisements
Advertisements

प्रश्न

Verify that det(AB) = (det A)(det B) for A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]` and B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`

बेरीज

उत्तर

Given A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]`

B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`

AB = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)] [(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`

= `[(4 - 6 - 18, 12 + 12 - 14, 12 + 0 - 10),(1 - 0 + 63,3 +0 + 49, 3 + 0 + 35),(2 - 6 - 45, 6 + 12 - 35, 6 + 0 - 25)]`

= `[(-20, 10, 2),(64, 52, 38),(-49, -1, -19)]`

det(AB) = |AB|

= `|(-20, 10, 2),(64, 52, 38),(-49, - 17, -19)|`

= `2 xx 2 |(-10, 5, 1),(32, 26, 19),(-49, -17, -19)|`

= `4|(-10, 5, 1),(32, 26, 19),(-17, -9, 0)|  "R"_3 -> "R"_3 + "R"_2`

= 4 [– 10 (0 – 9 × 19) – 5(0 + 17 × 19) + 1(32 × 9 + 17 × 26)]

= 4[1710 – 5 × 323 + 288 + 442]

= 4[1710 – 1615 + 730]

= 4[2440 – 1615]

= 4 × 825

det (AB) = 3300 .......(1)

A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]`

|A| = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]`

= 4(0 – 21) – 3(– 5 – 14) – 2(3 – 0)

= – 84 – 3 × – 19 – 6

= – 84 + 57 – 6

= – 90 + 57

det A = – 33 .......(2)

B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`

|B| = `|(1, 3, 3),(-2, 4, 0),(9, 7, 5)|`

= 1(20 – 0) – 3(– 10 – 0) + 3(– 14 – 36)

= 20 + 30 + 3 × – 50

= 50 – 150

det A = – 100 .......(3)

From equations (2) and (3)

(det A)(det B) = – 33 × – 100

(detA)(det B) = 3300 ........(4)

From equations (1) and (4), we have

det(AB) = (det A)(det B)

shaalaa.com
Determinants
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Matrices and Determinants - Exercise 7.2 [पृष्ठ ३०]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 7 Matrices and Determinants
Exercise 7.2 | Q 20 | पृष्ठ ३०

संबंधित प्रश्‍न

Without expanding the determinant, prove that `|("s", "a"^2, "b"^2 + "c"^2),("s", "b"^2, "c"^2 + "a"^2),("s", "c"^2, "a"^2 + "b"^2)|` = 0


Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`


Prove that `|(sec^2theta, tan^2theta, 1),(tan^2theta, sec^2theta, -1),(38, 36, 2)|` = 0


If `|("a", "b", "a"alpha + "b"),("b", "c", "b"alpha + "c"),("a"alpha + "b", "b"alpha + "c", 0)|` = 0, prove that a, b, c are in G. P or α is a root of ax2 + 2bx + c = 0


If A is a Square, matrix, and |A| = 2, find the value of |A AT|


Determine the roots of the equation `|(1,4, 20),(1, -2, 5),(1, 2x, 5x^2)|` = 0


Show that `|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + b")|` = 8abc


Identify the singular and non-singular matrices:

`[(1, 2, 3),(4, 5, 6),(7, 8, 9)]`


Identify the singular and non-singular matrices:

`[(2, -3, 5),(6, 0, 4),(1, 5, -7)]`


Identify the singular and non-singular matrices:

`[(0, "a" - "b", "k"),("b" - "a", 0, 5),(-"k", -5, 0)]`


Determine the values of a and b so that the following matrices are singular:

A = `[(7, 3),(-2, "a")]`


Determine the values of a and b so that the following matrices are singular:

B = `[("b" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`


Choose the correct alternative:
The value of x, for which the matrix A = `[("e"^(x - 2), "e"^(7 + x)),("e"^(2 + x), "e"^(2x + 3))]` is singular


Choose the correct alternative:
If x1, x2, x3 as well as y1, y2, y3 are in geometric progression with the same common ratio, then the points (x1, y1), (x2, y2), (x3, y3) are


Find the area of the triangle with vertices at the point given is (1, 0), (6, 0), (4, 3).


Let a, b, c, d be in arithmetic progression with common difference λ. If `|(x + a - c, x + b, x + a),(x - 1, x + c, x + b),(x - b + d, x + d, x + c)|` = 2, then value of λ2 is equal to ______.


For f(x)= `ℓn|x + sqrt(x^2 + 1)|`, then the value of`g(x) = (cosx)^((cosecx - 1))` and `h(x) = (e^x - e^-x)/(e^x + e^-x)`, then the value of `|(f(0), f(e), g(π/6)),(f(-e), h(0), h(π)),(g((5π)/6), h(-π), f(f(f(0))))|` is ______.


Let S = `{((a_11, a_12),(a_21, a_22)): a_(ij) ∈ {0, 1, 2}, a_11 = a_22}`

Then the number of non-singular matrices in the set S is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×