Advertisements
Advertisements
प्रश्न
Verify that det(AB) = (det A)(det B) for A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]` and B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`
उत्तर
Given A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]`
B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`
AB = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)] [(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`
= `[(4 - 6 - 18, 12 + 12 - 14, 12 + 0 - 10),(1 - 0 + 63,3 +0 + 49, 3 + 0 + 35),(2 - 6 - 45, 6 + 12 - 35, 6 + 0 - 25)]`
= `[(-20, 10, 2),(64, 52, 38),(-49, -1, -19)]`
det(AB) = |AB|
= `|(-20, 10, 2),(64, 52, 38),(-49, - 17, -19)|`
= `2 xx 2 |(-10, 5, 1),(32, 26, 19),(-49, -17, -19)|`
= `4|(-10, 5, 1),(32, 26, 19),(-17, -9, 0)| "R"_3 -> "R"_3 + "R"_2`
= 4 [– 10 (0 – 9 × 19) – 5(0 + 17 × 19) + 1(32 × 9 + 17 × 26)]
= 4[1710 – 5 × 323 + 288 + 442]
= 4[1710 – 1615 + 730]
= 4[2440 – 1615]
= 4 × 825
det (AB) = 3300 .......(1)
A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]`
|A| = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]`
= 4(0 – 21) – 3(– 5 – 14) – 2(3 – 0)
= – 84 – 3 × – 19 – 6
= – 84 + 57 – 6
= – 90 + 57
det A = – 33 .......(2)
B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`
|B| = `|(1, 3, 3),(-2, 4, 0),(9, 7, 5)|`
= 1(20 – 0) – 3(– 10 – 0) + 3(– 14 – 36)
= 20 + 30 + 3 × – 50
= 50 – 150
det A = – 100 .......(3)
From equations (2) and (3)
(det A)(det B) = – 33 × – 100
(detA)(det B) = 3300 ........(4)
From equations (1) and (4), we have
det(AB) = (det A)(det B)
APPEARS IN
संबंधित प्रश्न
Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0
Prove that `|(sec^2theta, tan^2theta, 1),(tan^2theta, sec^2theta, -1),(38, 36, 2)|` = 0
Without expanding, evaluate the following determinants:
`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`
If A is a Square, matrix, and |A| = 2, find the value of |A AT|
If λ = – 2, determine the value of `|(0, lambda, 1),(lambda^2, 0, 3lambda^2 + 1),(-1, 6lambda - 1, 0)|`
Show that `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)
If (k, 2), (2, 4) and (3, 2) are vertices of the triangle of area 4 square units then determine the value of k
Identify the singular and non-singular matrices:
`[(2, -3, 5),(6, 0, 4),(1, 5, -7)]`
Determine the values of a and b so that the following matrices are singular:
B = `[("b" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
Find the value of the product: `|(log_3 64, log_4 3),(log_3 8, log_4 9)| xx |(log_2 3, log_8 3),(log_3 4, log_3 4)|`
Choose the correct alternative:
If A = `[(1, -1),(2, -1)]`, B = `[("a", 1),("b", -1)]` and (A + B)2 = A2 + B2, then the values of a and b are
Choose the correct alternative:
If x1, x2, x3 as well as y1, y2, y3 are in geometric progression with the same common ratio, then the points (x1, y1), (x2, y2), (x3, y3) are
Choose the correct alternative:
If ⌊.⌋ denotes the greatest integer less than or equal to the real number under consideration and – 1 ≤ x < 0, 0 ≤ y < 1, 1 ≤ z ≤ 2, then the value of the determinant `[([x] + 1, [y], [z]),([x], [y] + 1, [z]),([x], [y], [z] + 1)]`
If Δ is the area and 2s the sum of three sides of a triangle, then
If P1, P2, P3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then `cosA/P_1 + cosB/P_2 + cosC/P_3` is equal to
What is the value of Δ if, Δ = `|(0, sin alpha, - cos alpha),(-sin alpha, 0, sin beta),(cos alpha, - sin beta, 0)|`
Find the area of the triangle with vertices at the point given is (1, 0), (6, 0), (4, 3).
`|("b" + "c", "c", "b"),("c", "c" + "a", "a"),("b", "a", "a" + "b")|` = ______.