Advertisements
Advertisements
प्रश्न
Show that `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)
उत्तर
Let |A| = `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|`
Put x = y
|A| = `|(1, 1, 1),(x, x, z),(x^2, x^2, z^2)|`
|A| = 0 since two columns identical
∴ x – y is a factor of A.
The given determinant is in the cyclic symmetric form in x, y, and z.
Therefore, y – z and z – x are also factors of |A|.
The degree of the product of the factors (x – y)(y – z)(z – x) is 3 and the degree of the product of the leading diagonal elements 1, y, z2 is 3.
Therefore, the other factor is the constant factor k.
`|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = k(x – y)(y – z)(z – x)
Put x = 0, y = 1, z = -1 we get
`|(1, 1, 1),(0, 1,-1),(0^2, 1^2, (-1)^2)|` = k(0 – 1)(1 + 1)(– 1 – 0)
`|(1, 1, 1),(0, 1, -1),(0, 1, 1)|` = 2k
Expanding along the first column
1(1 + 1) = 2k
2 = 2k
⇒ k = 1
∴ `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)
APPEARS IN
संबंधित प्रश्न
Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`
Prove that `|(sec^2theta, tan^2theta, 1),(tan^2theta, sec^2theta, -1),(38, 36, 2)|` = 0
Write the general form of a 3 × 3 skew-symmetric matrix and prove that its determinant is 0
Without expanding, evaluate the following determinants:
`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`
Without expanding, evaluate the following determinants:
`|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|`
If A is a Square, matrix, and |A| = 2, find the value of |A AT|
Determine the roots of the equation `|(1,4, 20),(1, -2, 5),(1, 2x, 5x^2)|` = 0
Verify that det(AB) = (det A)(det B) for A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]` and B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`
Show that `|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + b")|` = 8abc
Solve that `|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0
Show that `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)
Find the area of the triangle whose vertices are (0, 0), (1, 2) and (4, 3)
If cos 2θ = 0, determine `[(theta, costheta, sintheta),(costheta, sintheta, 0),(sintheta, 0, costheta)]^2`
The remainder obtained when 1! + 2! + 3! + ......... + 10! is divided by 6 is,
Choose the correct option:
Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then
Let a, b, c, d be in arithmetic progression with common difference λ. If `|(x + a - c, x + b, x + a),(x - 1, x + c, x + b),(x - b + d, x + d, x + c)|` = 2, then value of λ2 is equal to ______.
If `x∈R|(8, 2, x),(2, x, 8),(x, 8, 2)|` = 0, then `|x/2|` is equal to ______.
Let S = `{((a_11, a_12),(a_21, a_22)): a_(ij) ∈ {0, 1, 2}, a_11 = a_22}`
Then the number of non-singular matrices in the set S is ______.