Advertisements
Advertisements
प्रश्न
Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`
उत्तर
Let Δ = `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")|`
Δ = `|("a", 0, -"c"),(0, "b", -"c"),(1, 1, 1 + "c")| {:("R"_1 -> "R"_1 - "R"_3),("R"_2 -> "R"_2 - "R"_3):}`
= a[b(1 + c) + c(1)] – 0 – c[0 – b]
= a[b + bc + c] + bc
= ab + abc + ac + bc
= abc + ab + bc + ac
= abc
`["abc"/"abc" + "ab"/"abc" + "bc"/"abc" + "ac"/"abc"] = "abc" [1 + 1/"c" + 1/"a" + 1/"b"]`
Δ = `"abc" [1 + 1/"a" + 1/"b" + 1/"c"]``
APPEARS IN
संबंधित प्रश्न
Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0
Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`
Prove that `|(sec^2theta, tan^2theta, 1),(tan^2theta, sec^2theta, -1),(38, 36, 2)|` = 0
Write the general form of a 3 × 3 skew-symmetric matrix and prove that its determinant is 0
If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`
If A is a Square, matrix, and |A| = 2, find the value of |A AT|
If A and B are square matrices of order 3 such that |A| = –1 and |B| = 3, find the value of |3AB|
Verify that det(AB) = (det A)(det B) for A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]` and B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`
Solve that `|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0
Find the area of the triangle whose vertices are (0, 0), (1, 2) and (4, 3)
Identify the singular and non-singular matrices:
`[(2, -3, 5),(6, 0, 4),(1, 5, -7)]`
If cos 2θ = 0, determine `[(theta, costheta, sintheta),(costheta, sintheta, 0),(sintheta, 0, costheta)]^2`
Choose the correct alternative:
If A = `[("a", x),(y, "a")]` and if xy = 1, then det(AAT) is equal to
Choose the correct alternative:
The value of the determinant of A = `[(0, "a", -"b"),(-"a", 0, "c"),("b", -"c", 0)]` is
Choose the correct alternative:
If x1, x2, x3 as well as y1, y2, y3 are in geometric progression with the same common ratio, then the points (x1, y1), (x2, y2), (x3, y3) are
If P1, P2, P3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then `cosA/P_1 + cosB/P_2 + cosC/P_3` is equal to
What is the value of Δ if, Δ = `|(0, sin alpha, - cos alpha),(-sin alpha, 0, sin beta),(cos alpha, - sin beta, 0)|`
Choose the correct option:
Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then