हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Solve that abcabcabc|x+abcax+bcabx+c| = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve that `|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0

योग

उत्तर

`|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0

Put x = 0

`|(0 + "a", "b", "c"),("a", 0 + "b", "c"),("a", "b", 0 + "c")|` = 0

`|("a", "b", "c"),("a", "b", "c"),("a", "b", "c")|` = 0

= 0

x = 0 satisfies the given equation. x = 0 is a root of the given equation

Since three rows are identical. x = 0 is a root of multiplicity 2.

Since the degree of the product of the leading diagonal elements (x + a)(x + b)(x + c) is 3.

There is one more root for the given equation.

Put x = – (a + b + c)

`|((-"a" + "b" + "c") + "a", "b", "c"),("a", -("a" + "b" + "c") + "b", "c"),("a", "b", -("a" + "b" + "c") + "c")|` = 0

`|(-"b" - "c", "b", "c"),("a", -"a" - "c", "c"),("a", "b", -"a" - "b")|` = 0

`"C"_1 -> "C"_1 + "C"_2 + "C"_3`

`|(-"b" - "c" + "b" + "c", "b", "c"),("a" - "a" - "c" + "c", -"a" - "c", "c"),("a" + "b" - "a" - "b", "b", -"a" - "b")|` = 0

`|(0, "b", "c"),(0, -"a" - "c", "c"),(0, "b", -"a" - "b")|` = 0

0 = 0

∴ x = – (a + b + c) satisfies the given equation.

Hence, the required roots of the given equation are x = 0, 0, – (a + b + c)

shaalaa.com
Determinants
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Matrices and Determinants - Exercise 7.3 [पृष्ठ ३४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 7 Matrices and Determinants
Exercise 7.3 | Q 3 | पृष्ठ ३४

संबंधित प्रश्न

Show that `|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|` is divisiible by x


Find the value of `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` if x, y, z ≠ 1


Without expanding, evaluate the following determinants:

`|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|`


If A and B are square matrices of order 3 such that |A| = –1 and |B| = 3, find the value of |3AB|


If λ = – 2, determine the value of `|(0, lambda, 1),(lambda^2, 0, 3lambda^2 + 1),(-1, 6lambda - 1, 0)|`


Determine the roots of the equation `|(1,4, 20),(1, -2, 5),(1, 2x, 5x^2)|` = 0


Show that `|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + b")|` = 8abc


Solve `|(4 - x, 4 + x, 4 +  x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0


Show that `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)


Find the area of the triangle whose vertices are (0, 0), (1, 2) and (4, 3)


If cos 2θ = 0, determine  `[(theta, costheta, sintheta),(costheta, sintheta, 0),(sintheta, 0, costheta)]^2`


Find the value of the product: `|(log_3 64, log_4 3),(log_3 8, log_4 9)| xx |(log_2 3, log_8 3),(log_3 4, log_3 4)|`


Choose the correct alternative:
The value of x, for which the matrix A = `[("e"^(x - 2), "e"^(7 + x)),("e"^(2 + x), "e"^(2x + 3))]` is singular


Choose the correct alternative:
If ⌊.⌋ denotes the greatest integer less than or equal to the real number under consideration and – 1 ≤ x < 0, 0 ≤ y < 1, 1 ≤ z ≤ 2, then the value of the determinant `[([x] + 1, [y], [z]),([x], [y] + 1, [z]),([x], [y], [z] + 1)]`


The remainder obtained when 1! + 2! + 3! + ......... + 10! is divided by 6 is,


If f(x) = `|(cos^2x, cosx.sinx, -sinx),(cosx sinx, sin^2x, cosx),(sinx, -cosx, 0)|`, then for all x


For f(x)= `ℓn|x + sqrt(x^2 + 1)|`, then the value of`g(x) = (cosx)^((cosecx - 1))` and `h(x) = (e^x - e^-x)/(e^x + e^-x)`, then the value of `|(f(0), f(e), g(π/6)),(f(-e), h(0), h(π)),(g((5π)/6), h(-π), f(f(f(0))))|` is ______.


If a, b, c are positive and are the pth, qth and rth terms respectively of a G.P., then the value of `|(loga, p, 1),(logb, q, 1),(logc, r, 1)|` is ______.


If `|(1 + x, x, x^2),(x, 1 + x, x^2),(x^2, x, 1 + x)|` = ax5 + bx4 + cx3 + dx2 + λx + µ be an identity in x, where a, b, c, d, λ, µ are independent of x. Then the value of λ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×