Advertisements
Advertisements
Question
Solve that `|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0
Solution
`|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0
Put x = 0
`|(0 + "a", "b", "c"),("a", 0 + "b", "c"),("a", "b", 0 + "c")|` = 0
`|("a", "b", "c"),("a", "b", "c"),("a", "b", "c")|` = 0
= 0
x = 0 satisfies the given equation. x = 0 is a root of the given equation
Since three rows are identical. x = 0 is a root of multiplicity 2.
Since the degree of the product of the leading diagonal elements (x + a)(x + b)(x + c) is 3.
There is one more root for the given equation.
Put x = – (a + b + c)
`|((-"a" + "b" + "c") + "a", "b", "c"),("a", -("a" + "b" + "c") + "b", "c"),("a", "b", -("a" + "b" + "c") + "c")|` = 0
`|(-"b" - "c", "b", "c"),("a", -"a" - "c", "c"),("a", "b", -"a" - "b")|` = 0
`"C"_1 -> "C"_1 + "C"_2 + "C"_3`
`|(-"b" - "c" + "b" + "c", "b", "c"),("a" - "a" - "c" + "c", -"a" - "c", "c"),("a" + "b" - "a" - "b", "b", -"a" - "b")|` = 0
`|(0, "b", "c"),(0, -"a" - "c", "c"),(0, "b", -"a" - "b")|` = 0
0 = 0
∴ x = – (a + b + c) satisfies the given equation.
Hence, the required roots of the given equation are x = 0, 0, – (a + b + c)
APPEARS IN
RELATED QUESTIONS
Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`
Prove that `|(sec^2theta, tan^2theta, 1),(tan^2theta, sec^2theta, -1),(38, 36, 2)|` = 0
Show that `|(x + 2"a", y + 2"b", z + 2"c"),(x, y, z),("a", "b", "c")|` = 0
Write the general form of a 3 × 3 skew-symmetric matrix and prove that its determinant is 0
Prove that `|(1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")|` = 0
If A is a Square, matrix, and |A| = 2, find the value of |A AT|
If A and B are square matrices of order 3 such that |A| = –1 and |B| = 3, find the value of |3AB|
Determine the roots of the equation `|(1,4, 20),(1, -2, 5),(1, 2x, 5x^2)|` = 0
Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`
Solve `|(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0
Identify the singular and non-singular matrices:
`[(0, "a" - "b", "k"),("b" - "a", 0, 5),(-"k", -5, 0)]`
Determine the values of a and b so that the following matrices are singular:
A = `[(7, 3),(-2, "a")]`
Determine the values of a and b so that the following matrices are singular:
B = `[("b" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
Choose the correct alternative:
If `|(2"a", x_1, y_1),(2"b", x_2, y_2),(2"c", x_3, y_3)| = "abc"/2 ≠ 0`, then the area of the triangle whose vertices are `(x_1/"a", y_1/"a"), (x_2/"b", y_2/"b"), (x_3/"c", y_3/"c")` is
Choose the correct alternative:
if Δ = `|("a", "b", "c"),(x, y, z),("p", "q", "r")|` then `|("ka", "kb","kc"),("k"x, "k"y, "k"z),("kp", "kq", "kr")|` is
`|("b" + "c", "c", "b"),("c", "c" + "a", "a"),("b", "a", "a" + "b")|` = ______.
If a, b, c are positive and are the pth, qth and rth terms respectively of a G.P., then the value of `|(loga, p, 1),(logb, q, 1),(logc, r, 1)|` is ______.
Let S = `{((a_11, a_12),(a_21, a_22)): a_(ij) ∈ {0, 1, 2}, a_11 = a_22}`
Then the number of non-singular matrices in the set S is ______.