English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Determine the roots of the equation |14201-2512x5x2| = 0 - Mathematics

Advertisements
Advertisements

Question

Determine the roots of the equation `|(1,4, 20),(1, -2, 5),(1, 2x, 5x^2)|` = 0

Sum

Solution

Now `|(1,4, 20),(1, -2, 5),(1, 2x, 5x^2)| = (5)|(1, 4, 4),(1, -2, 1),(1, 2x, x^2)|`

Taking 5 as a common factor from C3

= `(5)(2)|(1, 2, 4),(1, -1, 1),(1, x, x^2)|`

Taking 2 as a common factor from C2 

= `10|(1, 2, 4),(1, -1, 1),(1, x, x^2)|`

= `10|(0, 3,3),(0, -1 - x, 1 - x^2),(1, x, x^2)|  {:("R"_1 -> "R"_1 - "R"_2),("R"_2 -> "R"_2 - "R"_3):}`

Expanding along C1

`101[3(1 - x^2) - (- 1 - x)(3)]}`

= 10[3(1 – x2) + 3(1 + x)]

= 10[3(1 + x)(1 – x) + 3(1 + x)]

= 10[3(1 + x)(1 – x + 1)]

= 30(1 +x)(2 – x)

Given the determinant value is 0

⇒ 30(1 + x)(2 – x) = 0

⇒ 1 + x = 0 or 2 – x = 0

⇒ x = – 1 or x = 2

So, x = – 1 or 2.

shaalaa.com
Determinants
  Is there an error in this question or solution?
Chapter 7: Matrices and Determinants - Exercise 7.2 [Page 30]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 7 Matrices and Determinants
Exercise 7.2 | Q 19 | Page 30

RELATED QUESTIONS

Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0


If `|("a", "b", "a"alpha + "b"),("b", "c", "b"alpha + "c"),("a"alpha + "b", "b"alpha + "c", 0)|` = 0, prove that a, b, c are in G. P or α is a root of ax2 + 2bx + c = 0


If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`


Show that `|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|` is divisiible by x


If A = `[(1/2, alpha),(0, 1/2)]`, prove that `sum_("k" = 1)^"n" det("A"^"k") = 1/3(1 - 1/4)` 


If A and B are square matrices of order 3 such that |A| = –1 and |B| = 3, find the value of |3AB|


If λ = – 2, determine the value of `|(0, lambda, 1),(lambda^2, 0, 3lambda^2 + 1),(-1, 6lambda - 1, 0)|`


Verify that det(AB) = (det A)(det B) for A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]` and B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`


Show that `|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + b")|` = 8abc


Solve that `|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0


Show that `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)


Solve `|(4 - x, 4 + x, 4 +  x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0


Identify the singular and non-singular matrices:

`[(1, 2, 3),(4, 5, 6),(7, 8, 9)]`


Identify the singular and non-singular matrices:

`[(0, "a" - "b", "k"),("b" - "a", 0, 5),(-"k", -5, 0)]`


Determine the values of a and b so that the following matrices are singular:

A = `[(7, 3),(-2, "a")]`


Choose the correct alternative:
If A = `|(-1, 2, 4),(3, 1, 0),(-2, 4, 2)|` and B = `|(-2, 4, 2),(6, 2, 0),(-2, 4, 8)|`, then B is given by


If Δ is the area and 2s the sum of three sides of a triangle, then


If P1, P2, P3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then `cosA/P_1 + cosB/P_2 + cosC/P_3` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×