Advertisements
Advertisements
Question
Determine the roots of the equation `|(1,4, 20),(1, -2, 5),(1, 2x, 5x^2)|` = 0
Solution
Now `|(1,4, 20),(1, -2, 5),(1, 2x, 5x^2)| = (5)|(1, 4, 4),(1, -2, 1),(1, 2x, x^2)|`
Taking 5 as a common factor from C3
= `(5)(2)|(1, 2, 4),(1, -1, 1),(1, x, x^2)|`
Taking 2 as a common factor from C2
= `10|(1, 2, 4),(1, -1, 1),(1, x, x^2)|`
= `10|(0, 3,3),(0, -1 - x, 1 - x^2),(1, x, x^2)| {:("R"_1 -> "R"_1 - "R"_2),("R"_2 -> "R"_2 - "R"_3):}`
Expanding along C1
`101[3(1 - x^2) - (- 1 - x)(3)]}`
= 10[3(1 – x2) + 3(1 + x)]
= 10[3(1 + x)(1 – x) + 3(1 + x)]
= 10[3(1 + x)(1 – x + 1)]
= 30(1 +x)(2 – x)
Given the determinant value is 0
⇒ 30(1 + x)(2 – x) = 0
⇒ 1 + x = 0 or 2 – x = 0
⇒ x = – 1 or x = 2
So, x = – 1 or 2.
APPEARS IN
RELATED QUESTIONS
Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0
If `|("a", "b", "a"alpha + "b"),("b", "c", "b"alpha + "c"),("a"alpha + "b", "b"alpha + "c", 0)|` = 0, prove that a, b, c are in G. P or α is a root of ax2 + 2bx + c = 0
If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`
Show that `|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|` is divisiible by x4
If A = `[(1/2, alpha),(0, 1/2)]`, prove that `sum_("k" = 1)^"n" det("A"^"k") = 1/3(1 - 1/4)`
If A and B are square matrices of order 3 such that |A| = –1 and |B| = 3, find the value of |3AB|
If λ = – 2, determine the value of `|(0, lambda, 1),(lambda^2, 0, 3lambda^2 + 1),(-1, 6lambda - 1, 0)|`
Verify that det(AB) = (det A)(det B) for A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]` and B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`
Show that `|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + b")|` = 8abc
Solve that `|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0
Show that `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)
Solve `|(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0
Identify the singular and non-singular matrices:
`[(1, 2, 3),(4, 5, 6),(7, 8, 9)]`
Identify the singular and non-singular matrices:
`[(0, "a" - "b", "k"),("b" - "a", 0, 5),(-"k", -5, 0)]`
Determine the values of a and b so that the following matrices are singular:
A = `[(7, 3),(-2, "a")]`
Choose the correct alternative:
If A = `|(-1, 2, 4),(3, 1, 0),(-2, 4, 2)|` and B = `|(-2, 4, 2),(6, 2, 0),(-2, 4, 8)|`, then B is given by
If Δ is the area and 2s the sum of three sides of a triangle, then
If P1, P2, P3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then `cosA/P_1 + cosB/P_2 + cosC/P_3` is equal to