Advertisements
Advertisements
Question
If A = `[(1/2, alpha),(0, 1/2)]`, prove that `sum_("k" = 1)^"n" det("A"^"k") = 1/3(1 - 1/4)`
Solution
A = `[(1/2, alpha),(0, 1/2)]`
|A| = `|(1/2,alpha),(0, 1/2)|`
= `1/4 - 0`
= `1/4`
A2 = A × A
= `[(1/2, alpha),(0, 1/2)] [(1/2, alpha),(0, 1/2)]`
= `[(1/4, alpha),(0, 1/4)]`
|A2| = `|(1/4, alpha),(0, 1/4)|`
=`1/4 xx 1/4 - 0`
= `(1/4)^2`
= `1/4^2`
|Ak| = `1/4^"k"`
So `sum_("k" = 1)^"n" det("A"^"k") = 1/4 + 1/4^2 + 1/4^3 + ...... + 1/4^"n"`
Which is a G.P with a `1/4` and r = `1/4`
∴ Sn = `("a"(1 - "r"^"n"))/(1 - "r")`
= `(1/4[1 - (1/4)^"n"])/(1 - 1/4)`
= `(1/4[1 - 1/4^"n"])/(3/4)`
= `1/4 xx 4/3[1 - 1/4^"n"]`
= `1/3[1 - 1/4^"n"]`.
APPEARS IN
RELATED QUESTIONS
Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`
Write the general form of a 3 × 3 skew-symmetric matrix and prove that its determinant is 0
If a, b, c, are all positive, and are pth, qth and rth terms of a G.P., show that `|(log"a", "p", 1),(log"b", "q", 1),(log"c", "r", 1)|` = 0
If A and B are square matrices of order 3 such that |A| = –1 and |B| = 3, find the value of |3AB|
If λ = – 2, determine the value of `|(0, lambda, 1),(lambda^2, 0, 3lambda^2 + 1),(-1, 6lambda - 1, 0)|`
Determine the roots of the equation `|(1,4, 20),(1, -2, 5),(1, 2x, 5x^2)|` = 0
Show that `|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + b")|` = 8abc
Show that `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)
Solve `|(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0
If (k, 2), (2, 4) and (3, 2) are vertices of the triangle of area 4 square units then determine the value of k
Determine the values of a and b so that the following matrices are singular:
B = `[("b" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
If cos 2θ = 0, determine `[(theta, costheta, sintheta),(costheta, sintheta, 0),(sintheta, 0, costheta)]^2`
Choose the correct alternative:
If A = `[("a", x),(y, "a")]` and if xy = 1, then det(AAT) is equal to
Choose the correct alternative:
If ⌊.⌋ denotes the greatest integer less than or equal to the real number under consideration and – 1 ≤ x < 0, 0 ≤ y < 1, 1 ≤ z ≤ 2, then the value of the determinant `[([x] + 1, [y], [z]),([x], [y] + 1, [z]),([x], [y], [z] + 1)]`
If P1, P2, P3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then `cosA/P_1 + cosB/P_2 + cosC/P_3` is equal to
If f(x) = `|(cos^2x, cosx.sinx, -sinx),(cosx sinx, sin^2x, cosx),(sinx, -cosx, 0)|`, then for all x
A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the
Find the area of the triangle with vertices at the point given is (1, 0), (6, 0), (4, 3).
`|("b" + "c", "c", "b"),("c", "c" + "a", "a"),("b", "a", "a" + "b")|` = ______.