Advertisements
Advertisements
Question
If (k, 2), (2, 4) and (3, 2) are vertices of the triangle of area 4 square units then determine the value of k
Solution
Given Area of the triangle with vertices (k, 2), (2, 4) and (3, 2) is 4 square units.
The area of the triangle with vertices
(x1, y1), (x2, y2) and (x3, y3) is
Δ = `|1/2||(x_1, y_1, 1),(x_2, y_2, 1),(x_3, y_3, 1)|`
Given Δ = 4
(x1, y1) = (k, 2)
(x2, y2) = (2, 4)
and (x3, y3) = (3, 2)
∴ We have 4 = `|1/2||("k", 2, 1),(2, 4, 1),(3, 2, 1)|`
4 × 2 = `|("k", 2, 1),(2, 4, 1),(3, 2, 1)|`
± 8 = k(4 – 2) – 2(2 – 3) + 1(4 – 12)
± 8 = k × 2 – 2 × – 1 – 8
± 8 = 2k + 2 – 8
± 8 = 2k – 6
2k – 6 = 8 or 2k – 6 = -8
2k = 8 + 6 or 2k = – 8 + 6
2k = 14 or 2k = -2
k = 7 or k = 1
Required values of k are 1, 7.
APPEARS IN
RELATED QUESTIONS
Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0
Prove that `|(sec^2theta, tan^2theta, 1),(tan^2theta, sec^2theta, -1),(38, 36, 2)|` = 0
Show that `|(x + 2"a", y + 2"b", z + 2"c"),(x, y, z),("a", "b", "c")|` = 0
Prove that `|(1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")|` = 0
If a, b, c, are all positive, and are pth, qth and rth terms of a G.P., show that `|(log"a", "p", 1),(log"b", "q", 1),(log"c", "r", 1)|` = 0
Without expanding, evaluate the following determinants:
`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`
Without expanding, evaluate the following determinants:
`|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|`
If λ = – 2, determine the value of `|(0, lambda, 1),(lambda^2, 0, 3lambda^2 + 1),(-1, 6lambda - 1, 0)|`
Verify that det(AB) = (det A)(det B) for A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]` and B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`
Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`
Show that `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)
Solve `|(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0
Determine the values of a and b so that the following matrices are singular:
A = `[(7, 3),(-2, "a")]`
Find the value of the product: `|(log_3 64, log_4 3),(log_3 8, log_4 9)| xx |(log_2 3, log_8 3),(log_3 4, log_3 4)|`
The remainder obtained when 1! + 2! + 3! + ......... + 10! is divided by 6 is,
If f(x) = `|(cos^2x, cosx.sinx, -sinx),(cosx sinx, sin^2x, cosx),(sinx, -cosx, 0)|`, then for all x
For f(x)= `ℓn|x + sqrt(x^2 + 1)|`, then the value of`g(x) = (cosx)^((cosecx - 1))` and `h(x) = (e^x - e^-x)/(e^x + e^-x)`, then the value of `|(f(0), f(e), g(π/6)),(f(-e), h(0), h(π)),(g((5π)/6), h(-π), f(f(f(0))))|` is ______.