English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Show that bcbcbCcacacaababab|b+cbcb2C2c+acac2a2a+baba2b2| = 0 - Mathematics

Advertisements
Advertisements

Question

Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0

Sum

Solution

`|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)| = "abc"/"abc" |("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` 

= `1/"abc" |("ab" + "ac", "abc", "ab"^2"c"^2),("bc" + "ab", "abc", "bc"^2"a"^2),("ca" + "bc", "abc", "ca"^2"b"^2)|  {:("R"_1 -> "aR"_1),("R"_2 -> "bR"_2),("R"_3 -. "cR"_3):}`

= `(("abc")("abc"))/"abc" |("ab" + "ac", 1, "bc"),("bc" + "ab", 1, "ca"),("ca" + "bc", 1, "ab")|`

Taking out abc from column c2 and c3 

`"C"_1 -> "C"_1 + "C"_3`

= `("abc") |("ab" + "bc" + "ca", 1, "bc"),("ab" + "bc" + "ca", 1, "ca"),("ab" + "bc" + "ca", 1, "ab")|` 

= `("abc")("ab" + "bc" +  "ca") |(1, 1, "bc"),(1, 1, "ca"),(1, 1, "ab")|`

= (abc)(ab + bc + ca) × 0

= 0

shaalaa.com
Determinants
  Is there an error in this question or solution?
Chapter 7: Matrices and Determinants - Exercise 7.2 [Page 28]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 7 Matrices and Determinants
Exercise 7.2 | Q 2 | Page 28

RELATED QUESTIONS

Prove that `|(sec^2theta, tan^2theta, 1),(tan^2theta, sec^2theta, -1),(38, 36, 2)|` = 0


If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`


Show that `|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|` is divisiible by x


If a, b, c, are all positive, and are pth, qth and rth terms of a G.P., show that `|(log"a", "p", 1),(log"b", "q", 1),(log"c", "r", 1)|` = 0


Find the value of `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` if x, y, z ≠ 1


Without expanding, evaluate the following determinants:

`|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|`


If A and B are square matrices of order 3 such that |A| = –1 and |B| = 3, find the value of |3AB|


Verify that det(AB) = (det A)(det B) for A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]` and B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`


Find the area of the triangle whose vertices are (0, 0), (1, 2) and (4, 3)


Determine the values of a and b so that the following matrices are singular:

A = `[(7, 3),(-2, "a")]`


Determine the values of a and b so that the following matrices are singular:

B = `[("b" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`


Find the value of the product: `|(log_3 64, log_4 3),(log_3 8, log_4 9)| xx |(log_2 3, log_8 3),(log_3 4, log_3 4)|`


Choose the correct alternative:
If `|(2"a", x_1, y_1),(2"b", x_2, y_2),(2"c", x_3, y_3)| = "abc"/2 ≠ 0`, then the area of the triangle whose vertices are `(x_1/"a", y_1/"a"), (x_2/"b", y_2/"b"), (x_3/"c", y_3/"c")` is


Choose the correct alternative:
The value of the determinant of A = `[(0, "a", -"b"),(-"a", 0, "c"),("b", -"c", 0)]` is


Choose the correct alternative:
If x1, x2, x3 as well as y1, y2, y3 are in geometric progression with the same common ratio, then the points (x1, y1), (x2, y2), (x3, y3) are


If f(x) = `|(cos^2x, cosx.sinx, -sinx),(cosx sinx, sin^2x, cosx),(sinx, -cosx, 0)|`, then for all x


Find the area of the triangle with vertices at the point given is (1, 0), (6, 0), (4, 3).


`|("b" + "c", "c", "b"),("c", "c" + "a", "a"),("b", "a", "a" + "b")|` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×