Advertisements
Advertisements
Question
Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`
Solution
Let Δ = `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)|`
Δ = `|(2"a"^2 + 2"ab", 2"b"^2 + 2"bc", 2"c"^2 + 2"ac"),("a"^2 + 2"ab", 2"b"^2 + "bc", "c"^2 + "ac"),("ab", "b"^2 + "bc", "c"^2)| {:("R"_1 -> "R"_1 + "R"_2 + "R"_3),("R"_2 -> "R"_2 + "R"_3):}`
= `2 |("a"^2 + "ab", "b"^2 + 2"bc", "c"^2 + "ac"),("a"^2 + 2"ab", 2"b"^2 + "bc", "c"^2 + "ac"),("ab", "b"^2 + "bc", "c"^2)|`
= `2 |("a"^2 + "ab", "b"^2 + "bc", "c"^2 + "ac"),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| "R"_1 -> "R"_1 - "R"_2`
= `2|(0, "bc", "c"^2),("a"^2, -"bc", "ac" - "c"^2),("ab", "b"^2 + "bc", "c"^2)| {:("R"_1 -> "R"_1 - "R"_2),("R"_2 -> "R"_2 - "R"_3):}`
= `2|(0, "bc", "c"^2),("a"^2, 0, "ac"),("ab", "b"^2, 0)| {:("R"_2 -> "R"_2 + "R"_1),("R"_3 -> "R"_3 - "R"_11):}`
= `2"abc" |(0, "b", "c"),("a", 0, "c"),("a", "b", 0)|`
= 2abc [0 – b(0 – ac) + c(ab – 0)]
= 2abc [abc + abc]
= 2abc × 2abc
Δ = 4a2b2c2
APPEARS IN
RELATED QUESTIONS
Without expanding the determinant, prove that `|("s", "a"^2, "b"^2 + "c"^2),("s", "b"^2, "c"^2 + "a"^2),("s", "c"^2, "a"^2 + "b"^2)|` = 0
Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0
Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`
Prove that `|(1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")|` = 0
Show that `|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|` is divisiible by x4
If A = `[(1/2, alpha),(0, 1/2)]`, prove that `sum_("k" = 1)^"n" det("A"^"k") = 1/3(1 - 1/4)`
If A and B are square matrices of order 3 such that |A| = –1 and |B| = 3, find the value of |3AB|
If λ = – 2, determine the value of `|(0, lambda, 1),(lambda^2, 0, 3lambda^2 + 1),(-1, 6lambda - 1, 0)|`
Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`
Show that `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)
If (k, 2), (2, 4) and (3, 2) are vertices of the triangle of area 4 square units then determine the value of k
Identify the singular and non-singular matrices:
`[(1, 2, 3),(4, 5, 6),(7, 8, 9)]`
Choose the correct alternative:
if Δ = `|("a", "b", "c"),(x, y, z),("p", "q", "r")|` then `|("ka", "kb","kc"),("k"x, "k"y, "k"z),("kp", "kq", "kr")|` is
Choose the correct alternative:
The value of the determinant of A = `[(0, "a", -"b"),(-"a", 0, "c"),("b", -"c", 0)]` is
Choose the correct alternative:
If A = `|(-1, 2, 4),(3, 1, 0),(-2, 4, 2)|` and B = `|(-2, 4, 2),(6, 2, 0),(-2, 4, 8)|`, then B is given by
The remainder obtained when 1! + 2! + 3! + ......... + 10! is divided by 6 is,
If P1, P2, P3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then `cosA/P_1 + cosB/P_2 + cosC/P_3` is equal to
A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the
`|("b" + "c", "c", "b"),("c", "c" + "a", "a"),("b", "a", "a" + "b")|` = ______.