English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Prove that abcaccaabbacabbbccabc|a2bcac+c2a2+abb2acabb2+bcc2|=4a2b2c2 - Mathematics

Advertisements
Advertisements

Question

Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`

Sum

Solution

Let Δ = `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)|`

Δ = `|(2"a"^2 + 2"ab", 2"b"^2 + 2"bc", 2"c"^2 + 2"ac"),("a"^2 + 2"ab", 2"b"^2 + "bc", "c"^2 + "ac"),("ab", "b"^2 + "bc", "c"^2)|  {:("R"_1 -> "R"_1 + "R"_2 + "R"_3),("R"_2 -> "R"_2 + "R"_3):}`

= `2 |("a"^2 + "ab", "b"^2 + 2"bc", "c"^2 + "ac"),("a"^2 + 2"ab", 2"b"^2 + "bc", "c"^2 + "ac"),("ab", "b"^2 + "bc", "c"^2)|`

= `2 |("a"^2 + "ab", "b"^2 + "bc", "c"^2 + "ac"),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)|  "R"_1 -> "R"_1 - "R"_2`

= `2|(0, "bc", "c"^2),("a"^2, -"bc", "ac" - "c"^2),("ab", "b"^2 + "bc", "c"^2)|  {:("R"_1 -> "R"_1 - "R"_2),("R"_2 -> "R"_2 - "R"_3):}`

= `2|(0, "bc", "c"^2),("a"^2, 0, "ac"),("ab", "b"^2, 0)|  {:("R"_2 -> "R"_2 + "R"_1),("R"_3 -> "R"_3 - "R"_11):}`

= `2"abc" |(0, "b", "c"),("a", 0, "c"),("a", "b", 0)|`

= 2abc [0 – b(0 – ac) + c(ab – 0)]

= 2abc [abc + abc]

= 2abc × 2abc

Δ = 4a2b2c2

shaalaa.com
Determinants
  Is there an error in this question or solution?
Chapter 7: Matrices and Determinants - Exercise 7.2 [Page 29]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 7 Matrices and Determinants
Exercise 7.2 | Q 3 | Page 29

RELATED QUESTIONS

Without expanding the determinant, prove that `|("s", "a"^2, "b"^2 + "c"^2),("s", "b"^2, "c"^2 + "a"^2),("s", "c"^2, "a"^2 + "b"^2)|` = 0


Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0


Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`


Prove that `|(1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")|` = 0


Show that `|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|` is divisiible by x


If A = `[(1/2, alpha),(0, 1/2)]`, prove that `sum_("k" = 1)^"n" det("A"^"k") = 1/3(1 - 1/4)` 


If A and B are square matrices of order 3 such that |A| = –1 and |B| = 3, find the value of |3AB|


If λ = – 2, determine the value of `|(0, lambda, 1),(lambda^2, 0, 3lambda^2 + 1),(-1, 6lambda - 1, 0)|`


Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`


Show that `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)


If (k, 2), (2, 4) and (3, 2) are vertices of the triangle of area 4 square units then determine the value of k


Identify the singular and non-singular matrices:

`[(1, 2, 3),(4, 5, 6),(7, 8, 9)]`


Choose the correct alternative:
if Δ = `|("a", "b", "c"),(x, y, z),("p", "q", "r")|` then  `|("ka", "kb","kc"),("k"x, "k"y, "k"z),("kp", "kq", "kr")|` is


Choose the correct alternative:
The value of the determinant of A = `[(0, "a", -"b"),(-"a", 0, "c"),("b", -"c", 0)]` is


Choose the correct alternative:
If A = `|(-1, 2, 4),(3, 1, 0),(-2, 4, 2)|` and B = `|(-2, 4, 2),(6, 2, 0),(-2, 4, 8)|`, then B is given by


The remainder obtained when 1! + 2! + 3! + ......... + 10! is divided by 6 is,


If P1, P2, P3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then `cosA/P_1 + cosB/P_2 + cosC/P_3` is equal to


A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the


`|("b" + "c", "c", "b"),("c", "c" + "a", "a"),("b", "a", "a" + "b")|` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×