English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Show that aabacabbbcacbcc|a2+x2abacabb2+x2bcacbcc2+x2| is divisiible by x4 - Mathematics

Advertisements
Advertisements

Question

Show that `|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|` is divisiible by x

Sum

Solution

Let Δ = `|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|`

Δ = `"a"/"a"|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|`

Multiply C1 by a

Δ = `1/"a"|("a"^2 + "a"x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|`

Applying `"C"_1 -> "C"_1 + "bC"_2 + "cC"_3`

= `1/"a"|("a"^3 + "a"x^2 +"ab"^2 + "ac"^2, "ab", "ac"),("a"^2"b" + "b"^3 + "b"x^2 + "bc"2, "b"^2 + x^2, "bc"),("a"^2"c" + "b"^2"C" + "c"^3 + "c"x^2, "bc", "c"^2 + x^2)|`

= `1/"a"|("a"("a"^2 + "b"^2 + "c"^2 + x^2), "ab", "ac"),("b"("a"^2 + "b"^2 + "c"^2 + x^2), "b"^2 + x^2, "bc"),("c"("a"^2 + "b"^2 + "c"^2 + x^), "bc", "c"^2 + x^2)|`

= `("a"^2 + "b"^2 + "c"^2 + x^2)/"a" |("a", "bc", "ac"),("b","b"^2 + x^2, "bc"),("c", "bc", "c"^2 + x^2)|`

Applyig `"C"_2 -> "C"_2 - "bC"_1` and `"C"_3 -> "C"_3- "cC"_1`

= `("a"^2 + "b"^2 + "c"^2 + x^2)/"a" |("a", "ab" - "ab", "ac" - "ac"),("b", "b"^2 + x^2 - "b"^2, "bc" - "bc"),("c", "bc" - "bc", "c"^2 + x^2 - "c"^2)|`

= `("a"^2 + "b"^2 + "c"^2 + x^2)/"a" |("a", 0, 0),("b", x^2, 0),("c", 0, x^2)|`

Expanding along the first row

=  `("a"^2 + "b"^2 + "c"^2 + x^2)/"a" xx "a"[(x^2) (x^2) - (0) (0)] + 0 + 0`

= `("a"^2 + "b"^2+ "c"^2 + x^2)x^4`

Which is divisible by x4 

shaalaa.com
Determinants
  Is there an error in this question or solution?
Chapter 7: Matrices and Determinants - Exercise 7.2 [Page 29]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 7 Matrices and Determinants
Exercise 7.2 | Q 11 | Page 29

RELATED QUESTIONS

Without expanding the determinant, prove that `|("s", "a"^2, "b"^2 + "c"^2),("s", "b"^2, "c"^2 + "a"^2),("s", "c"^2, "a"^2 + "b"^2)|` = 0


Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`


If A = `[(1/2, alpha),(0, 1/2)]`, prove that `sum_("k" = 1)^"n" det("A"^"k") = 1/3(1 - 1/4)` 


Without expanding, evaluate the following determinants:

`|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|`


Determine the roots of the equation `|(1,4, 20),(1, -2, 5),(1, 2x, 5x^2)|` = 0


Verify that det(AB) = (det A)(det B) for A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]` and B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`


Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`


Show that `|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + b")|` = 8abc


Solve that `|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0


Show that `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)


Show that `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)


Identify the singular and non-singular matrices:

`[(0, "a" - "b", "k"),("b" - "a", 0, 5),(-"k", -5, 0)]`


Choose the correct alternative:
If A = `[(1, -1),(2, -1)]`, B = `[("a", 1),("b", -1)]` and (A + B)2 = A2 + B2, then the values of a and b are


Choose the correct alternative:
If ⌊.⌋ denotes the greatest integer less than or equal to the real number under consideration and – 1 ≤ x < 0, 0 ≤ y < 1, 1 ≤ z ≤ 2, then the value of the determinant `[([x] + 1, [y], [z]),([x], [y] + 1, [z]),([x], [y], [z] + 1)]`


A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the


Choose the correct option:

Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then


For f(x)= `ℓn|x + sqrt(x^2 + 1)|`, then the value of`g(x) = (cosx)^((cosecx - 1))` and `h(x) = (e^x - e^-x)/(e^x + e^-x)`, then the value of `|(f(0), f(e), g(π/6)),(f(-e), h(0), h(π)),(g((5π)/6), h(-π), f(f(f(0))))|` is ______.


If `x∈R|(8, 2, x),(2, x, 8),(x, 8, 2)|` = 0, then `|x/2|` is equal to ______.


Let S = `{((a_11, a_12),(a_21, a_22)): a_(ij) ∈ {0, 1, 2}, a_11 = a_22}`

Then the number of non-singular matrices in the set S is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×