Advertisements
Advertisements
Question
Show that `|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|` is divisiible by x4
Solution
Let Δ = `|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|`
Δ = `"a"/"a"|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|`
Multiply C1 by a
Δ = `1/"a"|("a"^2 + "a"x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|`
Applying `"C"_1 -> "C"_1 + "bC"_2 + "cC"_3`
= `1/"a"|("a"^3 + "a"x^2 +"ab"^2 + "ac"^2, "ab", "ac"),("a"^2"b" + "b"^3 + "b"x^2 + "bc"2, "b"^2 + x^2, "bc"),("a"^2"c" + "b"^2"C" + "c"^3 + "c"x^2, "bc", "c"^2 + x^2)|`
= `1/"a"|("a"("a"^2 + "b"^2 + "c"^2 + x^2), "ab", "ac"),("b"("a"^2 + "b"^2 + "c"^2 + x^2), "b"^2 + x^2, "bc"),("c"("a"^2 + "b"^2 + "c"^2 + x^), "bc", "c"^2 + x^2)|`
= `("a"^2 + "b"^2 + "c"^2 + x^2)/"a" |("a", "bc", "ac"),("b","b"^2 + x^2, "bc"),("c", "bc", "c"^2 + x^2)|`
Applyig `"C"_2 -> "C"_2 - "bC"_1` and `"C"_3 -> "C"_3- "cC"_1`
= `("a"^2 + "b"^2 + "c"^2 + x^2)/"a" |("a", "ab" - "ab", "ac" - "ac"),("b", "b"^2 + x^2 - "b"^2, "bc" - "bc"),("c", "bc" - "bc", "c"^2 + x^2 - "c"^2)|`
= `("a"^2 + "b"^2 + "c"^2 + x^2)/"a" |("a", 0, 0),("b", x^2, 0),("c", 0, x^2)|`
Expanding along the first row
= `("a"^2 + "b"^2 + "c"^2 + x^2)/"a" xx "a"[(x^2) (x^2) - (0) (0)] + 0 + 0`
= `("a"^2 + "b"^2+ "c"^2 + x^2)x^4`
Which is divisible by x4
APPEARS IN
RELATED QUESTIONS
Without expanding the determinant, prove that `|("s", "a"^2, "b"^2 + "c"^2),("s", "b"^2, "c"^2 + "a"^2),("s", "c"^2, "a"^2 + "b"^2)|` = 0
Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`
If A = `[(1/2, alpha),(0, 1/2)]`, prove that `sum_("k" = 1)^"n" det("A"^"k") = 1/3(1 - 1/4)`
Without expanding, evaluate the following determinants:
`|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|`
Determine the roots of the equation `|(1,4, 20),(1, -2, 5),(1, 2x, 5x^2)|` = 0
Verify that det(AB) = (det A)(det B) for A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]` and B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`
Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`
Show that `|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + b")|` = 8abc
Solve that `|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0
Show that `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)
Show that `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)
Identify the singular and non-singular matrices:
`[(0, "a" - "b", "k"),("b" - "a", 0, 5),(-"k", -5, 0)]`
Choose the correct alternative:
If A = `[(1, -1),(2, -1)]`, B = `[("a", 1),("b", -1)]` and (A + B)2 = A2 + B2, then the values of a and b are
Choose the correct alternative:
If ⌊.⌋ denotes the greatest integer less than or equal to the real number under consideration and – 1 ≤ x < 0, 0 ≤ y < 1, 1 ≤ z ≤ 2, then the value of the determinant `[([x] + 1, [y], [z]),([x], [y] + 1, [z]),([x], [y], [z] + 1)]`
A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the
Choose the correct option:
Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then
For f(x)= `ℓn|x + sqrt(x^2 + 1)|`, then the value of`g(x) = (cosx)^((cosecx - 1))` and `h(x) = (e^x - e^-x)/(e^x + e^-x)`, then the value of `|(f(0), f(e), g(π/6)),(f(-e), h(0), h(π)),(g((5π)/6), h(-π), f(f(f(0))))|` is ______.
If `x∈R|(8, 2, x),(2, x, 8),(x, 8, 2)|` = 0, then `|x/2|` is equal to ______.
Let S = `{((a_11, a_12),(a_21, a_22)): a_(ij) ∈ {0, 1, 2}, a_11 = a_22}`
Then the number of non-singular matrices in the set S is ______.