English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Verify that det(AB) = (det A)(det B) for A = [43-210723-5] and B = [133-240975] - Mathematics

Advertisements
Advertisements

Question

Verify that det(AB) = (det A)(det B) for A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]` and B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`

Sum

Solution

Given A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]`

B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`

AB = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)] [(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`

= `[(4 - 6 - 18, 12 + 12 - 14, 12 + 0 - 10),(1 - 0 + 63,3 +0 + 49, 3 + 0 + 35),(2 - 6 - 45, 6 + 12 - 35, 6 + 0 - 25)]`

= `[(-20, 10, 2),(64, 52, 38),(-49, -1, -19)]`

det(AB) = |AB|

= `|(-20, 10, 2),(64, 52, 38),(-49, - 17, -19)|`

= `2 xx 2 |(-10, 5, 1),(32, 26, 19),(-49, -17, -19)|`

= `4|(-10, 5, 1),(32, 26, 19),(-17, -9, 0)|  "R"_3 -> "R"_3 + "R"_2`

= 4 [– 10 (0 – 9 × 19) – 5(0 + 17 × 19) + 1(32 × 9 + 17 × 26)]

= 4[1710 – 5 × 323 + 288 + 442]

= 4[1710 – 1615 + 730]

= 4[2440 – 1615]

= 4 × 825

det (AB) = 3300 .......(1)

A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]`

|A| = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]`

= 4(0 – 21) – 3(– 5 – 14) – 2(3 – 0)

= – 84 – 3 × – 19 – 6

= – 84 + 57 – 6

= – 90 + 57

det A = – 33 .......(2)

B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`

|B| = `|(1, 3, 3),(-2, 4, 0),(9, 7, 5)|`

= 1(20 – 0) – 3(– 10 – 0) + 3(– 14 – 36)

= 20 + 30 + 3 × – 50

= 50 – 150

det A = – 100 .......(3)

From equations (2) and (3)

(det A)(det B) = – 33 × – 100

(detA)(det B) = 3300 ........(4)

From equations (1) and (4), we have

det(AB) = (det A)(det B)

shaalaa.com
Determinants
  Is there an error in this question or solution?
Chapter 7: Matrices and Determinants - Exercise 7.2 [Page 30]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 7 Matrices and Determinants
Exercise 7.2 | Q 20 | Page 30

RELATED QUESTIONS

Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`


Without expanding, evaluate the following determinants:

`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`


Without expanding, evaluate the following determinants:

`|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|`


If λ = – 2, determine the value of `|(0, lambda, 1),(lambda^2, 0, 3lambda^2 + 1),(-1, 6lambda - 1, 0)|`


Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`


Solve the following problems by using Factor Theorem:

Show that `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|` = (x – a)2 (x + 2a)


Solve `|(4 - x, 4 + x, 4 +  x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0


Show that `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)


Determine the values of a and b so that the following matrices are singular:

A = `[(7, 3),(-2, "a")]`


Choose the correct alternative:
If A = `[(1, -1),(2, -1)]`, B = `[("a", 1),("b", -1)]` and (A + B)2 = A2 + B2, then the values of a and b are


Choose the correct alternative:
If A = `[("a", x),(y, "a")]` and if xy = 1, then det(AAT) is equal to


Choose the correct alternative:
The value of x, for which the matrix A = `[("e"^(x - 2), "e"^(7 + x)),("e"^(2 + x), "e"^(2x + 3))]` is singular


Choose the correct alternative:
If x1, x2, x3 as well as y1, y2, y3 are in geometric progression with the same common ratio, then the points (x1, y1), (x2, y2), (x3, y3) are


A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the


Find the area of the triangle with vertices at the point given is (1, 0), (6, 0), (4, 3).


For f(x)= `ℓn|x + sqrt(x^2 + 1)|`, then the value of`g(x) = (cosx)^((cosecx - 1))` and `h(x) = (e^x - e^-x)/(e^x + e^-x)`, then the value of `|(f(0), f(e), g(π/6)),(f(-e), h(0), h(π)),(g((5π)/6), h(-π), f(f(f(0))))|` is ______.


If a, b, c, are non zero complex numbers satisfying a2 + b2 + c2 = 0 and `|(b^2 + c^2, ab, ac),(ab, c^2 + a^2, bc),(ac, bc, a^2 + b^2)|` = ka2b2c2, then k is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×