Advertisements
Advertisements
Question
Solve the following problems by using Factor Theorem:
Show that `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|` = (x – a)2 (x + 2a)
Solution
Let |A| = `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|`
Pt x = a in |A|, we get
|A| = `|("a", "a", "a"),("a", "a", "a"),("a", "a", "a")|`
By putting x = a , we have three rows of |A| are identical.
Therefore (x – a)2 is a factor of |A|
Put x = – 2a in |A|
|A| = `|(-2"a" + "a", "a"),("a", -2"a", "a"),("a", "a", -2"a")|`
= `|(-2"a" + "a" + "a", "a", "a"),("a" - 2"a" + "a", -2"a", "a"),("a" + "a" - 2"a","a", -2"a")|`
= `|(0, "a", "a"),(0, -2"a", "a"),(0, "a", -2"a")|`
∴ x + 2a is a factor of |A|. The degree of the product of the factors (x – a)2 (x + 2a) is 3.
The degree of tfie product of the leading diagonal elements x . x . x is 3.
∴ The other factor is the contant factor k.
∴ `|(x, "a", "a"),("a", x, "a"),("a", "a", x)| "k"(x - "a")^2 (x + 2"a")`
Put x = – a
`|(-"a", "a", "a"),("a", , "a"),("a", "a", - "a")| = "k"(- "a" - "a")^2 (- "a" + 2a")`
`"a"^3 |(-1, 1, 1),(1, -1, 1),(1, 1, -1)| = "k" xx 4"a"^2 xx "a"`
a3 [– 1(1 – 1) – 1( – 1 – 1) + 1(1 + 1)] = k . 4a3
a3 [0 + 2 + 2 ] = 4 ka3
4a3 = 4ka3
k = 1
∴ `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|` = (x – a)2 (x + 2a)
APPEARS IN
RELATED QUESTIONS
Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`
If `|("a", "b", "a"alpha + "b"),("b", "c", "b"alpha + "c"),("a"alpha + "b", "b"alpha + "c", 0)|` = 0, prove that a, b, c are in G. P or α is a root of ax2 + 2bx + c = 0
If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`
If a, b, c, are all positive, and are pth, qth and rth terms of a G.P., show that `|(log"a", "p", 1),(log"b", "q", 1),(log"c", "r", 1)|` = 0
Find the value of `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` if x, y, z ≠ 1
Without expanding, evaluate the following determinants:
`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`
Without expanding, evaluate the following determinants:
`|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|`
Verify that det(AB) = (det A)(det B) for A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]` and B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`
Show that `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)
Identify the singular and non-singular matrices:
`[(1, 2, 3),(4, 5, 6),(7, 8, 9)]`
Determine the values of a and b so that the following matrices are singular:
A = `[(7, 3),(-2, "a")]`
Determine the values of a and b so that the following matrices are singular:
B = `[("b" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
Choose the correct alternative:
If A = `[("a", x),(y, "a")]` and if xy = 1, then det(AAT) is equal to
Choose the correct alternative:
If A = `|(-1, 2, 4),(3, 1, 0),(-2, 4, 2)|` and B = `|(-2, 4, 2),(6, 2, 0),(-2, 4, 8)|`, then B is given by
The remainder obtained when 1! + 2! + 3! + ......... + 10! is divided by 6 is,
A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the
Choose the correct option:
Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then
Let S = `{((a_11, a_12),(a_21, a_22)): a_(ij) ∈ {0, 1, 2}, a_11 = a_22}`
Then the number of non-singular matrices in the set S is ______.