English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Solve the following problems by using Factor Theorem: Show that aaaaaa|xaaaxaaax| = (x – a)2 (x + 2a) - Mathematics

Advertisements
Advertisements

Question

Solve the following problems by using Factor Theorem:

Show that `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|` = (x – a)2 (x + 2a)

Sum

Solution

Let |A| = `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|`

Pt x = a in |A|, we get

|A| = `|("a", "a", "a"),("a", "a", "a"),("a", "a", "a")|`

By putting x = a , we have three rows of |A| are identical.

Therefore (x – a)2 is a factor of |A|

Put x = – 2a in |A|

|A| = `|(-2"a" + "a", "a"),("a", -2"a", "a"),("a", "a", -2"a")|`

= `|(-2"a" + "a" + "a", "a", "a"),("a" - 2"a" + "a", -2"a", "a"),("a" + "a" - 2"a","a", -2"a")|`

= `|(0, "a", "a"),(0, -2"a", "a"),(0, "a", -2"a")|`

∴ x + 2a is a factor of |A|. The degree of the product of the factors (x – a)2 (x + 2a) is 3.

The degree of tfie product of the leading diagonal elements x . x . x is 3.

∴ The other factor is the contant factor k.

∴ `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|  "k"(x - "a")^2 (x + 2"a")`

Put x = – a

`|(-"a", "a", "a"),("a", , "a"),("a", "a", - "a")| =  "k"(- "a" - "a")^2 (- "a" + 2a")`

`"a"^3 |(-1, 1, 1),(1, -1, 1),(1, 1, -1)| = "k" xx 4"a"^2 xx "a"`

a3 [– 1(1 – 1) – 1( – 1 – 1) + 1(1 + 1)] = k . 4a3

a3 [0 + 2 + 2 ] = 4 ka3

4a3 = 4ka3

k = 1

∴  `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|` = (x – a)2 (x + 2a)

shaalaa.com
Determinants
  Is there an error in this question or solution?
Chapter 7: Matrices and Determinants - Exercise 7.3 [Page 34]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 7 Matrices and Determinants
Exercise 7.3 | Q 1 | Page 34

RELATED QUESTIONS

Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`


If `|("a", "b", "a"alpha + "b"),("b", "c", "b"alpha + "c"),("a"alpha + "b", "b"alpha + "c", 0)|` = 0, prove that a, b, c are in G. P or α is a root of ax2 + 2bx + c = 0


If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`


If a, b, c, are all positive, and are pth, qth and rth terms of a G.P., show that `|(log"a", "p", 1),(log"b", "q", 1),(log"c", "r", 1)|` = 0


Find the value of `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` if x, y, z ≠ 1


Without expanding, evaluate the following determinants:

`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`


Without expanding, evaluate the following determinants:

`|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|`


Verify that det(AB) = (det A)(det B) for A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]` and B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`


Show that `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)


Identify the singular and non-singular matrices:

`[(1, 2, 3),(4, 5, 6),(7, 8, 9)]`


Determine the values of a and b so that the following matrices are singular:

A = `[(7, 3),(-2, "a")]`


Determine the values of a and b so that the following matrices are singular:

B = `[("b" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`


Choose the correct alternative:
If A = `[("a", x),(y, "a")]` and if xy = 1, then det(AAT) is equal to


Choose the correct alternative:
If A = `|(-1, 2, 4),(3, 1, 0),(-2, 4, 2)|` and B = `|(-2, 4, 2),(6, 2, 0),(-2, 4, 8)|`, then B is given by


The remainder obtained when 1! + 2! + 3! + ......... + 10! is divided by 6 is,


A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the


Choose the correct option:

Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then


Let S = `{((a_11, a_12),(a_21, a_22)): a_(ij) ∈ {0, 1, 2}, a_11 = a_22}`

Then the number of non-singular matrices in the set S is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×