हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Solve the following problems by using Factor Theorem: Show that aaaaaa|xaaaxaaax| = (x – a)2 (x + 2a) - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following problems by using Factor Theorem:

Show that `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|` = (x – a)2 (x + 2a)

योग

उत्तर

Let |A| = `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|`

Pt x = a in |A|, we get

|A| = `|("a", "a", "a"),("a", "a", "a"),("a", "a", "a")|`

By putting x = a , we have three rows of |A| are identical.

Therefore (x – a)2 is a factor of |A|

Put x = – 2a in |A|

|A| = `|(-2"a" + "a", "a"),("a", -2"a", "a"),("a", "a", -2"a")|`

= `|(-2"a" + "a" + "a", "a", "a"),("a" - 2"a" + "a", -2"a", "a"),("a" + "a" - 2"a","a", -2"a")|`

= `|(0, "a", "a"),(0, -2"a", "a"),(0, "a", -2"a")|`

∴ x + 2a is a factor of |A|. The degree of the product of the factors (x – a)2 (x + 2a) is 3.

The degree of tfie product of the leading diagonal elements x . x . x is 3.

∴ The other factor is the contant factor k.

∴ `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|  "k"(x - "a")^2 (x + 2"a")`

Put x = – a

`|(-"a", "a", "a"),("a", , "a"),("a", "a", - "a")| =  "k"(- "a" - "a")^2 (- "a" + 2a")`

`"a"^3 |(-1, 1, 1),(1, -1, 1),(1, 1, -1)| = "k" xx 4"a"^2 xx "a"`

a3 [– 1(1 – 1) – 1( – 1 – 1) + 1(1 + 1)] = k . 4a3

a3 [0 + 2 + 2 ] = 4 ka3

4a3 = 4ka3

k = 1

∴  `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|` = (x – a)2 (x + 2a)

shaalaa.com
Determinants
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Matrices and Determinants - Exercise 7.3 [पृष्ठ ३४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 7 Matrices and Determinants
Exercise 7.3 | Q 1 | पृष्ठ ३४

संबंधित प्रश्न

Without expanding the determinant, prove that `|("s", "a"^2, "b"^2 + "c"^2),("s", "b"^2, "c"^2 + "a"^2),("s", "c"^2, "a"^2 + "b"^2)|` = 0


Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`


Show that `|(x + 2"a", y + 2"b", z + 2"c"),(x, y, z),("a", "b", "c")|` = 0


If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`


If a, b, c, are all positive, and are pth, qth and rth terms of a G.P., show that `|(log"a", "p", 1),(log"b", "q", 1),(log"c", "r", 1)|` = 0


Without expanding, evaluate the following determinants:

`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`


Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`


Show that `|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + b")|` = 8abc


Show that `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)


Solve `|(4 - x, 4 + x, 4 +  x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0


Identify the singular and non-singular matrices:

`[(2, -3, 5),(6, 0, 4),(1, 5, -7)]`


Determine the values of a and b so that the following matrices are singular:

A = `[(7, 3),(-2, "a")]`


Choose the correct alternative:
If A = `[("a", x),(y, "a")]` and if xy = 1, then det(AAT) is equal to


If Δ is the area and 2s the sum of three sides of a triangle, then


What is the value of Δ if, Δ = `|(0, sin alpha, - cos alpha),(-sin alpha, 0, sin beta),(cos alpha, - sin beta, 0)|` 


Choose the correct option:

Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then


`|("b" + "c", "c", "b"),("c", "c" + "a", "a"),("b", "a", "a" + "b")|` = ______.


If `x∈R|(8, 2, x),(2, x, 8),(x, 8, 2)|` = 0, then `|x/2|` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×