Advertisements
Advertisements
प्रश्न
Solve the following problems by using Factor Theorem:
Show that `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|` = (x – a)2 (x + 2a)
उत्तर
Let |A| = `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|`
Pt x = a in |A|, we get
|A| = `|("a", "a", "a"),("a", "a", "a"),("a", "a", "a")|`
By putting x = a , we have three rows of |A| are identical.
Therefore (x – a)2 is a factor of |A|
Put x = – 2a in |A|
|A| = `|(-2"a" + "a", "a"),("a", -2"a", "a"),("a", "a", -2"a")|`
= `|(-2"a" + "a" + "a", "a", "a"),("a" - 2"a" + "a", -2"a", "a"),("a" + "a" - 2"a","a", -2"a")|`
= `|(0, "a", "a"),(0, -2"a", "a"),(0, "a", -2"a")|`
∴ x + 2a is a factor of |A|. The degree of the product of the factors (x – a)2 (x + 2a) is 3.
The degree of tfie product of the leading diagonal elements x . x . x is 3.
∴ The other factor is the contant factor k.
∴ `|(x, "a", "a"),("a", x, "a"),("a", "a", x)| "k"(x - "a")^2 (x + 2"a")`
Put x = – a
`|(-"a", "a", "a"),("a", , "a"),("a", "a", - "a")| = "k"(- "a" - "a")^2 (- "a" + 2a")`
`"a"^3 |(-1, 1, 1),(1, -1, 1),(1, 1, -1)| = "k" xx 4"a"^2 xx "a"`
a3 [– 1(1 – 1) – 1( – 1 – 1) + 1(1 + 1)] = k . 4a3
a3 [0 + 2 + 2 ] = 4 ka3
4a3 = 4ka3
k = 1
∴ `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|` = (x – a)2 (x + 2a)
APPEARS IN
संबंधित प्रश्न
Without expanding the determinant, prove that `|("s", "a"^2, "b"^2 + "c"^2),("s", "b"^2, "c"^2 + "a"^2),("s", "c"^2, "a"^2 + "b"^2)|` = 0
Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`
Show that `|(x + 2"a", y + 2"b", z + 2"c"),(x, y, z),("a", "b", "c")|` = 0
If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`
If a, b, c, are all positive, and are pth, qth and rth terms of a G.P., show that `|(log"a", "p", 1),(log"b", "q", 1),(log"c", "r", 1)|` = 0
Without expanding, evaluate the following determinants:
`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`
Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`
Show that `|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + b")|` = 8abc
Show that `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)
Solve `|(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0
Identify the singular and non-singular matrices:
`[(2, -3, 5),(6, 0, 4),(1, 5, -7)]`
Determine the values of a and b so that the following matrices are singular:
A = `[(7, 3),(-2, "a")]`
Choose the correct alternative:
If A = `[("a", x),(y, "a")]` and if xy = 1, then det(AAT) is equal to
If Δ is the area and 2s the sum of three sides of a triangle, then
What is the value of Δ if, Δ = `|(0, sin alpha, - cos alpha),(-sin alpha, 0, sin beta),(cos alpha, - sin beta, 0)|`
Choose the correct option:
Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then
`|("b" + "c", "c", "b"),("c", "c" + "a", "a"),("b", "a", "a" + "b")|` = ______.
If `x∈R|(8, 2, x),(2, x, 8),(x, 8, 2)|` = 0, then `|x/2|` is equal to ______.