हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Using cofactors of elements of second row, evaluate |A|, where A = [538201123] - Mathematics

Advertisements
Advertisements

प्रश्न

Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`

योग

उत्तर

A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`

Cofactr of 2, A21 = `(- 1)^(2 + 1)  |(3, 8),(2, 3)|`

= – [9 – 16]

= 7

Cofactr of 0, A22 = `(- 1)^(2 + 2)  |(5, 8),(1, 3)|`

= 15 – 8

= 7

Cofactr of 1, A23 = `(- 1)^(2 + 3)  |(5, 3),(1, 2)|`

= – [10 – 3]

= – 7

∴ |A| = a21 A21 + a22 A22 + a23 A23

= 2 × 7 + 0 × 7 + 1 × – 7

= 14 – 7

|A| = 7

shaalaa.com
Determinants
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Matrices and Determinants - Exercise 7.2 [पृष्ठ ३०]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 7 Matrices and Determinants
Exercise 7.2 | Q 21 | पृष्ठ ३०

संबंधित प्रश्न

Without expanding the determinant, prove that `|("s", "a"^2, "b"^2 + "c"^2),("s", "b"^2, "c"^2 + "a"^2),("s", "c"^2, "a"^2 + "b"^2)|` = 0


Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`


Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`


Write the general form of a 3 × 3 skew-symmetric matrix and prove that its determinant is 0


If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`


Find the value of `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` if x, y, z ≠ 1


Without expanding, evaluate the following determinants:

`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`


If A and B are square matrices of order 3 such that |A| = –1 and |B| = 3, find the value of |3AB|


Solve the following problems by using Factor Theorem:

Show that `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|` = (x – a)2 (x + 2a)


Show that `|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + b")|` = 8abc


Show that `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)


Show that `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)


Find the area of the triangle whose vertices are (0, 0), (1, 2) and (4, 3)


Determine the values of a and b so that the following matrices are singular:

B = `[("b" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`


If cos 2θ = 0, determine  `[(theta, costheta, sintheta),(costheta, sintheta, 0),(sintheta, 0, costheta)]^2`


Choose the correct alternative:
If A = `[("a", x),(y, "a")]` and if xy = 1, then det(AAT) is equal to


Choose the correct alternative:
If A = `|(-1, 2, 4),(3, 1, 0),(-2, 4, 2)|` and B = `|(-2, 4, 2),(6, 2, 0),(-2, 4, 8)|`, then B is given by


If Δ is the area and 2s the sum of three sides of a triangle, then


Choose the correct option:

Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then


`|("b" + "c", "c", "b"),("c", "c" + "a", "a"),("b", "a", "a" + "b")|` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×