Advertisements
Advertisements
प्रश्न
Show that `|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + b")|` = 8abc
उत्तर
Let |A| = `|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + b")|`
Put a = 0
|A| = `|("b" + "c", - "c", - "b"),("b" - "c", "c", "b"),("c" - "b", "c", "b")|`
= `"bc"|("b" + "c", -1, -1),("b" - "c", 1, 1),("c" - "b", 1, 1)|`
Since two columns identical
= bc × 0 = 0
∴ a – 0 is a factor.
That is, a is a factor.
Put b = 0 in |A|
|A| = `|("b", "a", "a" - "b"),("b", "a", "b" - "a"),(-"b", -"a", "a" + "b")|`
= `"ab" |(1, 1, "a" - "b"),(1, 1, "b" - "a"),(-1, -1, "a" + "b")|`
Since two columns identical
= ab × 0 = 0
∴ c – 0 is a factor.
That is, c is a factor.
The degree of the product of the factors abc is 3.
The degree of the product of leading diagonal elements (b + c)(c + a)(a + b) is 3.
∴ The other factor is the constant factor k.
`|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + "b")|` = kabc
Put a = 1
b = 1
c = 1
`|(1 + 1, 1 - 1, 1 - 1),(1 - 1, 1 + 1, 1 - 1),(1 - 1, 1 - 1, 1 + 1)|` = k × 1 × 1 × 1
`|(2, 0, 0),(0, 2, 0),(0, 0, 2)|` = k
2 × 2 × 2 = 8
⇒ k = 8
∴ `|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + b")|` = 8abc
APPEARS IN
संबंधित प्रश्न
Without expanding the determinant, prove that `|("s", "a"^2, "b"^2 + "c"^2),("s", "b"^2, "c"^2 + "a"^2),("s", "c"^2, "a"^2 + "b"^2)|` = 0
Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0
Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`
If `|("a", "b", "a"alpha + "b"),("b", "c", "b"alpha + "c"),("a"alpha + "b", "b"alpha + "c", 0)|` = 0, prove that a, b, c are in G. P or α is a root of ax2 + 2bx + c = 0
Prove that `|(1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")|` = 0
Find the value of `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` if x, y, z ≠ 1
Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`
Solve `|(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0
If (k, 2), (2, 4) and (3, 2) are vertices of the triangle of area 4 square units then determine the value of k
Identify the singular and non-singular matrices:
`[(1, 2, 3),(4, 5, 6),(7, 8, 9)]`
Identify the singular and non-singular matrices:
`[(2, -3, 5),(6, 0, 4),(1, 5, -7)]`
If cos 2θ = 0, determine `[(theta, costheta, sintheta),(costheta, sintheta, 0),(sintheta, 0, costheta)]^2`
Choose the correct alternative:
The value of the determinant of A = `[(0, "a", -"b"),(-"a", 0, "c"),("b", -"c", 0)]` is
If Δ is the area and 2s the sum of three sides of a triangle, then
A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the
Find the area of the triangle with vertices at the point given is (1, 0), (6, 0), (4, 3).
Choose the correct option:
Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then
If `|(1 + x, x, x^2),(x, 1 + x, x^2),(x^2, x, 1 + x)|` = ax5 + bx4 + cx3 + dx2 + λx + µ be an identity in x, where a, b, c, d, λ, µ are independent of x. Then the value of λ is ______.
If `x∈R|(8, 2, x),(2, x, 8),(x, 8, 2)|` = 0, then `|x/2|` is equal to ______.