हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Show that bcacabbccabacbcaa|b+ca-ca-bb-cc+ab-ac-bc-aa+b| = 8abc - Mathematics

Advertisements
Advertisements

प्रश्न

Show that `|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + b")|` = 8abc

योग

उत्तर

Let |A| = `|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + b")|`

Put a = 0

|A| = `|("b" + "c", - "c", - "b"),("b" - "c", "c", "b"),("c" - "b", "c", "b")|`

= `"bc"|("b" + "c", -1, -1),("b" - "c", 1, 1),("c" - "b", 1, 1)|`

Since two columns identical

= bc × 0 = 0

∴ a – 0 is a factor.

That is, a is a factor.

Put b = 0 in |A|

|A| = `|("b", "a", "a" - "b"),("b", "a", "b" - "a"),(-"b", -"a", "a" + "b")|`

= `"ab" |(1, 1, "a" - "b"),(1, 1, "b" - "a"),(-1, -1, "a" + "b")|`

Since two columns identical

= ab × 0 = 0

∴ c – 0 is a factor.

That is, c is a factor.

The degree of the product of the factors abc is 3.

The degree of the product of leading diagonal elements (b + c)(c + a)(a + b) is 3.

∴ The other factor is the constant factor k.

`|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + "b")|` = kabc

Put a = 1

b = 1

c = 1

`|(1 + 1, 1 - 1, 1 - 1),(1 - 1, 1 + 1, 1 - 1),(1 - 1, 1 - 1, 1 + 1)|` = k × 1 × 1 × 1

`|(2, 0, 0),(0, 2, 0),(0, 0, 2)|` = k

2 × 2 × 2 = 8

⇒ k = 8

∴ `|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + b")|` = 8abc

shaalaa.com
Determinants
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Matrices and Determinants - Exercise 7.3 [पृष्ठ ३४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 7 Matrices and Determinants
Exercise 7.3 | Q 2 | पृष्ठ ३४

संबंधित प्रश्न

Without expanding the determinant, prove that `|("s", "a"^2, "b"^2 + "c"^2),("s", "b"^2, "c"^2 + "a"^2),("s", "c"^2, "a"^2 + "b"^2)|` = 0


Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0


Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`


If `|("a", "b", "a"alpha + "b"),("b", "c", "b"alpha + "c"),("a"alpha + "b", "b"alpha + "c", 0)|` = 0, prove that a, b, c are in G. P or α is a root of ax2 + 2bx + c = 0


Prove that `|(1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")|` = 0


Find the value of `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` if x, y, z ≠ 1


Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`


Solve `|(4 - x, 4 + x, 4 +  x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0


If (k, 2), (2, 4) and (3, 2) are vertices of the triangle of area 4 square units then determine the value of k


Identify the singular and non-singular matrices:

`[(1, 2, 3),(4, 5, 6),(7, 8, 9)]`


Identify the singular and non-singular matrices:

`[(2, -3, 5),(6, 0, 4),(1, 5, -7)]`


If cos 2θ = 0, determine  `[(theta, costheta, sintheta),(costheta, sintheta, 0),(sintheta, 0, costheta)]^2`


Choose the correct alternative:
The value of the determinant of A = `[(0, "a", -"b"),(-"a", 0, "c"),("b", -"c", 0)]` is


If Δ is the area and 2s the sum of three sides of a triangle, then


A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the


Find the area of the triangle with vertices at the point given is (1, 0), (6, 0), (4, 3).


Choose the correct option:

Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then


If `|(1 + x, x, x^2),(x, 1 + x, x^2),(x^2, x, 1 + x)|` = ax5 + bx4 + cx3 + dx2 + λx + µ be an identity in x, where a, b, c, d, λ, µ are independent of x. Then the value of λ is ______.


If `x∈R|(8, 2, x),(2, x, 8),(x, 8, 2)|` = 0, then `|x/2|` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×