हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Show that bcbcbCcacacaababab|b+cbcb2C2c+acac2a2a+baba2b2| = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0

योग

उत्तर

`|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)| = "abc"/"abc" |("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` 

= `1/"abc" |("ab" + "ac", "abc", "ab"^2"c"^2),("bc" + "ab", "abc", "bc"^2"a"^2),("ca" + "bc", "abc", "ca"^2"b"^2)|  {:("R"_1 -> "aR"_1),("R"_2 -> "bR"_2),("R"_3 -. "cR"_3):}`

= `(("abc")("abc"))/"abc" |("ab" + "ac", 1, "bc"),("bc" + "ab", 1, "ca"),("ca" + "bc", 1, "ab")|`

Taking out abc from column c2 and c3 

`"C"_1 -> "C"_1 + "C"_3`

= `("abc") |("ab" + "bc" + "ca", 1, "bc"),("ab" + "bc" + "ca", 1, "ca"),("ab" + "bc" + "ca", 1, "ab")|` 

= `("abc")("ab" + "bc" +  "ca") |(1, 1, "bc"),(1, 1, "ca"),(1, 1, "ab")|`

= (abc)(ab + bc + ca) × 0

= 0

shaalaa.com
Determinants
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Matrices and Determinants - Exercise 7.2 [पृष्ठ २८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 7 Matrices and Determinants
Exercise 7.2 | Q 2 | पृष्ठ २८

संबंधित प्रश्न

Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`


Prove that `|(sec^2theta, tan^2theta, 1),(tan^2theta, sec^2theta, -1),(38, 36, 2)|` = 0


Write the general form of a 3 × 3 skew-symmetric matrix and prove that its determinant is 0


If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`


Find the value of `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` if x, y, z ≠ 1


If A = `[(1/2, alpha),(0, 1/2)]`, prove that `sum_("k" = 1)^"n" det("A"^"k") = 1/3(1 - 1/4)` 


If A and B are square matrices of order 3 such that |A| = –1 and |B| = 3, find the value of |3AB|


Show that `|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + b")|` = 8abc


Solve that `|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0


Show that `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)


Identify the singular and non-singular matrices:

`[(1, 2, 3),(4, 5, 6),(7, 8, 9)]`


Choose the correct alternative:
The value of the determinant of A = `[(0, "a", -"b"),(-"a", 0, "c"),("b", -"c", 0)]` is


Choose the correct alternative:
If x1, x2, x3 as well as y1, y2, y3 are in geometric progression with the same common ratio, then the points (x1, y1), (x2, y2), (x3, y3) are


Choose the correct alternative:
If A = `|(-1, 2, 4),(3, 1, 0),(-2, 4, 2)|` and B = `|(-2, 4, 2),(6, 2, 0),(-2, 4, 8)|`, then B is given by


If f(x) = `|(cos^2x, cosx.sinx, -sinx),(cosx sinx, sin^2x, cosx),(sinx, -cosx, 0)|`, then for all x


Choose the correct option:

Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then


For f(x)= `ℓn|x + sqrt(x^2 + 1)|`, then the value of`g(x) = (cosx)^((cosecx - 1))` and `h(x) = (e^x - e^-x)/(e^x + e^-x)`, then the value of `|(f(0), f(e), g(π/6)),(f(-e), h(0), h(π)),(g((5π)/6), h(-π), f(f(f(0))))|` is ______.


If `x∈R|(8, 2, x),(2, x, 8),(x, 8, 2)|` = 0, then `|x/2|` is equal to ______.


If a, b, c, are non zero complex numbers satisfying a2 + b2 + c2 = 0 and `|(b^2 + c^2, ab, ac),(ab, c^2 + a^2, bc),(ac, bc, a^2 + b^2)|` = ka2b2c2, then k is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×