मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Show that bcbcbCcacacaababab|b+cbcb2C2c+acac2a2a+baba2b2| = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0

बेरीज

उत्तर

`|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)| = "abc"/"abc" |("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` 

= `1/"abc" |("ab" + "ac", "abc", "ab"^2"c"^2),("bc" + "ab", "abc", "bc"^2"a"^2),("ca" + "bc", "abc", "ca"^2"b"^2)|  {:("R"_1 -> "aR"_1),("R"_2 -> "bR"_2),("R"_3 -. "cR"_3):}`

= `(("abc")("abc"))/"abc" |("ab" + "ac", 1, "bc"),("bc" + "ab", 1, "ca"),("ca" + "bc", 1, "ab")|`

Taking out abc from column c2 and c3 

`"C"_1 -> "C"_1 + "C"_3`

= `("abc") |("ab" + "bc" + "ca", 1, "bc"),("ab" + "bc" + "ca", 1, "ca"),("ab" + "bc" + "ca", 1, "ab")|` 

= `("abc")("ab" + "bc" +  "ca") |(1, 1, "bc"),(1, 1, "ca"),(1, 1, "ab")|`

= (abc)(ab + bc + ca) × 0

= 0

shaalaa.com
Determinants
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Matrices and Determinants - Exercise 7.2 [पृष्ठ २८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 7 Matrices and Determinants
Exercise 7.2 | Q 2 | पृष्ठ २८

संबंधित प्रश्‍न

Without expanding the determinant, prove that `|("s", "a"^2, "b"^2 + "c"^2),("s", "b"^2, "c"^2 + "a"^2),("s", "c"^2, "a"^2 + "b"^2)|` = 0


Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`


Prove that `|(sec^2theta, tan^2theta, 1),(tan^2theta, sec^2theta, -1),(38, 36, 2)|` = 0


Show that `|(x + 2"a", y + 2"b", z + 2"c"),(x, y, z),("a", "b", "c")|` = 0


Write the general form of a 3 × 3 skew-symmetric matrix and prove that its determinant is 0


If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`


Without expanding, evaluate the following determinants:

`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`


Without expanding, evaluate the following determinants:

`|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|`


Solve the following problems by using Factor Theorem:

Show that `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|` = (x – a)2 (x + 2a)


If (k, 2), (2, 4) and (3, 2) are vertices of the triangle of area 4 square units then determine the value of k


Identify the singular and non-singular matrices:

`[(0, "a" - "b", "k"),("b" - "a", 0, 5),(-"k", -5, 0)]`


Choose the correct alternative:
if Δ = `|("a", "b", "c"),(x, y, z),("p", "q", "r")|` then  `|("ka", "kb","kc"),("k"x, "k"y, "k"z),("kp", "kq", "kr")|` is


Choose the correct alternative:
If A = `|(-1, 2, 4),(3, 1, 0),(-2, 4, 2)|` and B = `|(-2, 4, 2),(6, 2, 0),(-2, 4, 8)|`, then B is given by


Find the area of the triangle with vertices at the point given is (1, 0), (6, 0), (4, 3).


If a, b, c are positive and are the pth, qth and rth terms respectively of a G.P., then the value of `|(loga, p, 1),(logb, q, 1),(logc, r, 1)|` is ______.


If `x∈R|(8, 2, x),(2, x, 8),(x, 8, 2)|` = 0, then `|x/2|` is equal to ______.


Let S = `{((a_11, a_12),(a_21, a_22)): a_(ij) ∈ {0, 1, 2}, a_11 = a_22}`

Then the number of non-singular matrices in the set S is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×