मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

If a, b, c are pth, qth and rth terms of an A.P, find the value of abcpqr|abcpqr111| - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`

बेरीज

उत्तर

Given a, b, c are pth, qth and rth terms of an A.P.

tp = a = A + (p – 1)D,

tq = b = A + (q – 1)D,

tr = c = A + (r – 1) D

Where A – first term, D – Common difference of the A.P.

`|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)| = |("A" + ("p" - 1)"D", "A" + ("q" - 1)"D", "A" + ("r" - 1)"D"),("p", "q", "r"),(1, 1, 1)|`

= `|("A", "A","A"),("p","q", "r"),(1, 1, 1)| + |(("p" - 1)"D", ("q" - 1)"D", ("r" - 1)"D"),("p", "q", "r"),(1, 1, 1)|`

= `"A"|(1, 1, 1),("p", "q", "r"),(1, 1, 1)| + "D"|("p" - 1, "q" - 1, "r" - 1),("p", "q", "r"),(1, 1, 1)|`

= `"A" xx 0 + "D" |("p", "q", "r"),("p", "q", "r"),(1, 1, 1)|  "R"_1 -> "R"_1+ "R"_3`

= 0 + D × 0   Two rows are same

 `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|` = 0

shaalaa.com
Determinants
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Matrices and Determinants - Exercise 7.2 [पृष्ठ २९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 7 Matrices and Determinants
Exercise 7.2 | Q 10 | पृष्ठ २९

संबंधित प्रश्‍न

Without expanding the determinant, prove that `|("s", "a"^2, "b"^2 + "c"^2),("s", "b"^2, "c"^2 + "a"^2),("s", "c"^2, "a"^2 + "b"^2)|` = 0


Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`


Show that `|(x + 2"a", y + 2"b", z + 2"c"),(x, y, z),("a", "b", "c")|` = 0


If `|("a", "b", "a"alpha + "b"),("b", "c", "b"alpha + "c"),("a"alpha + "b", "b"alpha + "c", 0)|` = 0, prove that a, b, c are in G. P or α is a root of ax2 + 2bx + c = 0


If λ = – 2, determine the value of `|(0, lambda, 1),(lambda^2, 0, 3lambda^2 + 1),(-1, 6lambda - 1, 0)|`


Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`


Solve the following problems by using Factor Theorem:

Show that `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|` = (x – a)2 (x + 2a)


Solve that `|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0


Find the area of the triangle whose vertices are (0, 0), (1, 2) and (4, 3)


Identify the singular and non-singular matrices:

`[(0, "a" - "b", "k"),("b" - "a", 0, 5),(-"k", -5, 0)]`


Choose the correct alternative:
The value of x, for which the matrix A = `[("e"^(x - 2), "e"^(7 + x)),("e"^(2 + x), "e"^(2x + 3))]` is singular


Choose the correct alternative:
If ⌊.⌋ denotes the greatest integer less than or equal to the real number under consideration and – 1 ≤ x < 0, 0 ≤ y < 1, 1 ≤ z ≤ 2, then the value of the determinant `[([x] + 1, [y], [z]),([x], [y] + 1, [z]),([x], [y], [z] + 1)]`


Choose the correct alternative:
If A = `|(-1, 2, 4),(3, 1, 0),(-2, 4, 2)|` and B = `|(-2, 4, 2),(6, 2, 0),(-2, 4, 8)|`, then B is given by


If Δ is the area and 2s the sum of three sides of a triangle, then


If P1, P2, P3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then `cosA/P_1 + cosB/P_2 + cosC/P_3` is equal to


Find the area of the triangle with vertices at the point given is (1, 0), (6, 0), (4, 3).


If a, b, c are positive and are the pth, qth and rth terms respectively of a G.P., then the value of `|(loga, p, 1),(logb, q, 1),(logc, r, 1)|` is ______.


If `x∈R|(8, 2, x),(2, x, 8),(x, 8, 2)|` = 0, then `|x/2|` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×