Advertisements
Advertisements
प्रश्न
Prove that `|(1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")|` = 0
उत्तर
L.H.S = `|(1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")|`
= `|(0, "a" - "b", "a"^2 - "bc" - "b"^2 + "ac"),(0, "b" - "c", "b"^2 - "ac" - "c"^2 + "ab"),(1, "c", "c"^2 - "ab")| {:("R"_1 -> "R"_1 - "R"_2),("R"_2 -> "R"_2 - "R"_3):}`
= `|(0, "a" - "b", ("a"^2 - "b"^2) + ("ac" - "bc")),(0, "b" - "c", ("b"^2 - "c"^2) + ("ab" - "ac")),(1, "c", "c"^2 - "ab")|`
= `|(0, "a" - "b", ("a" + "b")("a" - "b") + "c"("a" - "b")),(0, "b" - "c", ("b" + "c")("b" - "c") + "a"("b" - "c")),(1, "c", "c"^2 - "ab")|`
= `|(0, "a" - "b", ("a" - "b")("a" + "b" + "c")),(0, "b" - "c", ("b" - "c")("a" + "b" + "c")),(1, "c", "c"^2 - "ab")|`
Taking (a – b)(b – c) from R1 and R2 respectively
We get (a – b)(b – c) `|(0, 1, "a" + "b" + "c"),(0, 1, "a" + "b" + "c"),(1, "c", "c"^2 - "ab")|` expanding along C1
(a – b)(b – c) {0 – 0 + 1[(a + b + c) – (a + b + c)]} = 0
=R.H.S
APPEARS IN
संबंधित प्रश्न
Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0
Prove that `|(sec^2theta, tan^2theta, 1),(tan^2theta, sec^2theta, -1),(38, 36, 2)|` = 0
If `|("a", "b", "a"alpha + "b"),("b", "c", "b"alpha + "c"),("a"alpha + "b", "b"alpha + "c", 0)|` = 0, prove that a, b, c are in G. P or α is a root of ax2 + 2bx + c = 0
If A is a Square, matrix, and |A| = 2, find the value of |A AT|
If λ = – 2, determine the value of `|(0, lambda, 1),(lambda^2, 0, 3lambda^2 + 1),(-1, 6lambda - 1, 0)|`
Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`
Solve that `|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0
Solve `|(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0
Show that `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)
Identify the singular and non-singular matrices:
`[(0, "a" - "b", "k"),("b" - "a", 0, 5),(-"k", -5, 0)]`
Choose the correct alternative:
If A = `[(1, -1),(2, -1)]`, B = `[("a", 1),("b", -1)]` and (A + B)2 = A2 + B2, then the values of a and b are
Choose the correct alternative:
The value of the determinant of A = `[(0, "a", -"b"),(-"a", 0, "c"),("b", -"c", 0)]` is
Choose the correct alternative:
If ⌊.⌋ denotes the greatest integer less than or equal to the real number under consideration and – 1 ≤ x < 0, 0 ≤ y < 1, 1 ≤ z ≤ 2, then the value of the determinant `[([x] + 1, [y], [z]),([x], [y] + 1, [z]),([x], [y], [z] + 1)]`
The remainder obtained when 1! + 2! + 3! + ......... + 10! is divided by 6 is,
If P1, P2, P3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then `cosA/P_1 + cosB/P_2 + cosC/P_3` is equal to
What is the value of Δ if, Δ = `|(0, sin alpha, - cos alpha),(-sin alpha, 0, sin beta),(cos alpha, - sin beta, 0)|`
Let a, b, c, d be in arithmetic progression with common difference λ. If `|(x + a - c, x + b, x + a),(x - 1, x + c, x + b),(x - b + d, x + d, x + c)|` = 2, then value of λ2 is equal to ______.
If `|(1 + x, x, x^2),(x, 1 + x, x^2),(x^2, x, 1 + x)|` = ax5 + bx4 + cx3 + dx2 + λx + µ be an identity in x, where a, b, c, d, λ, µ are independent of x. Then the value of λ is ______.