English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Prove that aabcbbcaccab|1aa2-bc1bb2-ca1cc2-ab| = 0 - Mathematics

Advertisements
Advertisements

Question

Prove that `|(1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")|` = 0

Sum

Solution

L.H.S = `|(1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")|`

= `|(0, "a" - "b", "a"^2 - "bc" - "b"^2 + "ac"),(0, "b" - "c", "b"^2 - "ac" - "c"^2 + "ab"),(1, "c", "c"^2 - "ab")|  {:("R"_1 -> "R"_1 - "R"_2),("R"_2 -> "R"_2 - "R"_3):}`

= `|(0, "a" - "b", ("a"^2 - "b"^2) + ("ac" - "bc")),(0, "b" - "c", ("b"^2 - "c"^2) + ("ab" - "ac")),(1, "c", "c"^2 - "ab")|`

= `|(0, "a" - "b", ("a" + "b")("a" - "b") + "c"("a" - "b")),(0, "b" - "c", ("b" + "c")("b" - "c") + "a"("b" - "c")),(1, "c", "c"^2 - "ab")|`

= `|(0, "a" - "b", ("a" - "b")("a" + "b" + "c")),(0, "b" - "c", ("b" - "c")("a" + "b" + "c")),(1, "c", "c"^2 - "ab")|`

Taking (a – b)(b – c) from R1 and R2 respectively

We get (a – b)(b – c) `|(0, 1, "a" + "b" + "c"),(0, 1, "a" + "b" + "c"),(1, "c", "c"^2 - "ab")|` expanding along C1

(a – b)(b – c) {0 – 0 + 1[(a + b + c) – (a + b + c)]} = 0

=R.H.S

shaalaa.com
Determinants
  Is there an error in this question or solution?
Chapter 7: Matrices and Determinants - Exercise 7.2 [Page 29]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 7 Matrices and Determinants
Exercise 7.2 | Q 9 | Page 29

RELATED QUESTIONS

Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`


Show that `|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|` is divisiible by x


Determine the roots of the equation `|(1,4, 20),(1, -2, 5),(1, 2x, 5x^2)|` = 0


Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`


Find the area of the triangle whose vertices are (0, 0), (1, 2) and (4, 3)


Identify the singular and non-singular matrices:

`[(2, -3, 5),(6, 0, 4),(1, 5, -7)]`


Determine the values of a and b so that the following matrices are singular:

B = `[("b" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`


Choose the correct alternative:
The value of x, for which the matrix A = `[("e"^(x - 2), "e"^(7 + x)),("e"^(2 + x), "e"^(2x + 3))]` is singular


Choose the correct alternative:
If `|(2"a", x_1, y_1),(2"b", x_2, y_2),(2"c", x_3, y_3)| = "abc"/2 ≠ 0`, then the area of the triangle whose vertices are `(x_1/"a", y_1/"a"), (x_2/"b", y_2/"b"), (x_3/"c", y_3/"c")` is


Choose the correct alternative:
If ⌊.⌋ denotes the greatest integer less than or equal to the real number under consideration and – 1 ≤ x < 0, 0 ≤ y < 1, 1 ≤ z ≤ 2, then the value of the determinant `[([x] + 1, [y], [z]),([x], [y] + 1, [z]),([x], [y], [z] + 1)]`


The remainder obtained when 1! + 2! + 3! + ......... + 10! is divided by 6 is,


If f(x) = `|(cos^2x, cosx.sinx, -sinx),(cosx sinx, sin^2x, cosx),(sinx, -cosx, 0)|`, then for all x


What is the value of Δ if, Δ = `|(0, sin alpha, - cos alpha),(-sin alpha, 0, sin beta),(cos alpha, - sin beta, 0)|` 


Let a, b, c, d be in arithmetic progression with common difference λ. If `|(x + a - c, x + b, x + a),(x - 1, x + c, x + b),(x - b + d, x + d, x + c)|` = 2, then value of λ2 is equal to ______.


`|("b" + "c", "c", "b"),("c", "c" + "a", "a"),("b", "a", "a" + "b")|` = ______.


If `x∈R|(8, 2, x),(2, x, 8),(x, 8, 2)|` = 0, then `|x/2|` is equal to ______.


Let S = `{((a_11, a_12),(a_21, a_22)): a_(ij) ∈ {0, 1, 2}, a_11 = a_22}`

Then the number of non-singular matrices in the set S is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×