Advertisements
Advertisements
Question
Identify the singular and non-singular matrices:
`[(2, -3, 5),(6, 0, 4),(1, 5, -7)]`
Solution
Let B = `[(2, -3, 5),(6, 0, 4),(1, 5, -7)]`
|B| = `|(2, -3, 5),(6, 0, 4),(1, 5, -7)|`
|B| = 2(0 – 20) + 3(– 42 – 4) + 5(30 – 0)
|B| = – 40 + 3 × – 46 + 150
|B| = – 40 – 138 + 150
|B| = – 178 + 150 ≠ 0
∴ B is non singular.
APPEARS IN
RELATED QUESTIONS
Without expanding the determinant, prove that `|("s", "a"^2, "b"^2 + "c"^2),("s", "b"^2, "c"^2 + "a"^2),("s", "c"^2, "a"^2 + "b"^2)|` = 0
Write the general form of a 3 × 3 skew-symmetric matrix and prove that its determinant is 0
Prove that `|(1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")|` = 0
If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`
If a, b, c, are all positive, and are pth, qth and rth terms of a G.P., show that `|(log"a", "p", 1),(log"b", "q", 1),(log"c", "r", 1)|` = 0
Find the value of `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` if x, y, z ≠ 1
If A = `[(1/2, alpha),(0, 1/2)]`, prove that `sum_("k" = 1)^"n" det("A"^"k") = 1/3(1 - 1/4)`
Without expanding, evaluate the following determinants:
`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`
Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`
Solve that `|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0
Determine the values of a and b so that the following matrices are singular:
A = `[(7, 3),(-2, "a")]`
Determine the values of a and b so that the following matrices are singular:
B = `[("b" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
Find the value of the product: `|(log_3 64, log_4 3),(log_3 8, log_4 9)| xx |(log_2 3, log_8 3),(log_3 4, log_3 4)|`
Choose the correct alternative:
If A = `[(1, -1),(2, -1)]`, B = `[("a", 1),("b", -1)]` and (A + B)2 = A2 + B2, then the values of a and b are
Choose the correct alternative:
The value of the determinant of A = `[(0, "a", -"b"),(-"a", 0, "c"),("b", -"c", 0)]` is
If P1, P2, P3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then `cosA/P_1 + cosB/P_2 + cosC/P_3` is equal to
Find the area of the triangle with vertices at the point given is (1, 0), (6, 0), (4, 3).
For f(x)= `ℓn|x + sqrt(x^2 + 1)|`, then the value of`g(x) = (cosx)^((cosecx - 1))` and `h(x) = (e^x - e^-x)/(e^x + e^-x)`, then the value of `|(f(0), f(e), g(π/6)),(f(-e), h(0), h(π)),(g((5π)/6), h(-π), f(f(f(0))))|` is ______.