Advertisements
Advertisements
Question
Write the general form of a 3 × 3 skew-symmetric matrix and prove that its determinant is 0
Solution
Let A = `[(0, "a", "b"),(-"a", 0, -"c"),(-"b", "c", 0)]`
Here AT = `[(0, -"a", -"b"),("a", 0, "c"),("b", -"c", 0)]`
= – A
⇒ A is a skew symmetric matrix
Now |A| = `|(0, "a", "b"),(-"a", 0, -"c"),(-"b", "c", 0)|`
= 0(0 + c2) – a[0 – bc] + b[– ac + 0]
= abc – abc
= 0
APPEARS IN
RELATED QUESTIONS
Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0
Show that `|(x + 2"a", y + 2"b", z + 2"c"),(x, y, z),("a", "b", "c")|` = 0
If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`
Show that `|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|` is divisiible by x4
If a, b, c, are all positive, and are pth, qth and rth terms of a G.P., show that `|(log"a", "p", 1),(log"b", "q", 1),(log"c", "r", 1)|` = 0
If A = `[(1/2, alpha),(0, 1/2)]`, prove that `sum_("k" = 1)^"n" det("A"^"k") = 1/3(1 - 1/4)`
If λ = – 2, determine the value of `|(0, lambda, 1),(lambda^2, 0, 3lambda^2 + 1),(-1, 6lambda - 1, 0)|`
Determine the roots of the equation `|(1,4, 20),(1, -2, 5),(1, 2x, 5x^2)|` = 0
Solve that `|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0
If (k, 2), (2, 4) and (3, 2) are vertices of the triangle of area 4 square units then determine the value of k
Determine the values of a and b so that the following matrices are singular:
A = `[(7, 3),(-2, "a")]`
Choose the correct alternative:
If A = `[(1, -1),(2, -1)]`, B = `[("a", 1),("b", -1)]` and (A + B)2 = A2 + B2, then the values of a and b are
Choose the correct alternative:
If x1, x2, x3 as well as y1, y2, y3 are in geometric progression with the same common ratio, then the points (x1, y1), (x2, y2), (x3, y3) are
The remainder obtained when 1! + 2! + 3! + ......... + 10! is divided by 6 is,
If P1, P2, P3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then `cosA/P_1 + cosB/P_2 + cosC/P_3` is equal to
If f(x) = `|(cos^2x, cosx.sinx, -sinx),(cosx sinx, sin^2x, cosx),(sinx, -cosx, 0)|`, then for all x
A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the
Choose the correct option:
Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then
Let S = `{((a_11, a_12),(a_21, a_22)): a_(ij) ∈ {0, 1, 2}, a_11 = a_22}`
Then the number of non-singular matrices in the set S is ______.