Advertisements
Advertisements
Question
If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`
Solution
Given a, b, c are pth, qth and rth terms of an A.P.
tp = a = A + (p – 1)D,
tq = b = A + (q – 1)D,
tr = c = A + (r – 1) D
Where A – first term, D – Common difference of the A.P.
`|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)| = |("A" + ("p" - 1)"D", "A" + ("q" - 1)"D", "A" + ("r" - 1)"D"),("p", "q", "r"),(1, 1, 1)|`
= `|("A", "A","A"),("p","q", "r"),(1, 1, 1)| + |(("p" - 1)"D", ("q" - 1)"D", ("r" - 1)"D"),("p", "q", "r"),(1, 1, 1)|`
= `"A"|(1, 1, 1),("p", "q", "r"),(1, 1, 1)| + "D"|("p" - 1, "q" - 1, "r" - 1),("p", "q", "r"),(1, 1, 1)|`
= `"A" xx 0 + "D" |("p", "q", "r"),("p", "q", "r"),(1, 1, 1)| "R"_1 -> "R"_1+ "R"_3`
= 0 + D × 0 Two rows are same
`|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|` = 0
APPEARS IN
RELATED QUESTIONS
Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`
Prove that `|(sec^2theta, tan^2theta, 1),(tan^2theta, sec^2theta, -1),(38, 36, 2)|` = 0
Write the general form of a 3 × 3 skew-symmetric matrix and prove that its determinant is 0
If `|("a", "b", "a"alpha + "b"),("b", "c", "b"alpha + "c"),("a"alpha + "b", "b"alpha + "c", 0)|` = 0, prove that a, b, c are in G. P or α is a root of ax2 + 2bx + c = 0
Prove that `|(1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")|` = 0
Show that `|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|` is divisiible by x4
If A is a Square, matrix, and |A| = 2, find the value of |A AT|
If A and B are square matrices of order 3 such that |A| = –1 and |B| = 3, find the value of |3AB|
Find the area of the triangle whose vertices are (0, 0), (1, 2) and (4, 3)
If (k, 2), (2, 4) and (3, 2) are vertices of the triangle of area 4 square units then determine the value of k
Identify the singular and non-singular matrices:
`[(0, "a" - "b", "k"),("b" - "a", 0, 5),(-"k", -5, 0)]`
Determine the values of a and b so that the following matrices are singular:
B = `[("b" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
Find the value of the product: `|(log_3 64, log_4 3),(log_3 8, log_4 9)| xx |(log_2 3, log_8 3),(log_3 4, log_3 4)|`
Choose the correct alternative:
if Δ = `|("a", "b", "c"),(x, y, z),("p", "q", "r")|` then `|("ka", "kb","kc"),("k"x, "k"y, "k"z),("kp", "kq", "kr")|` is
The remainder obtained when 1! + 2! + 3! + ......... + 10! is divided by 6 is,
If P1, P2, P3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then `cosA/P_1 + cosB/P_2 + cosC/P_3` is equal to
A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the
`|("b" + "c", "c", "b"),("c", "c" + "a", "a"),("b", "a", "a" + "b")|` = ______.
If `x∈R|(8, 2, x),(2, x, 8),(x, 8, 2)|` = 0, then `|x/2|` is equal to ______.
Let S = `{((a_11, a_12),(a_21, a_22)): a_(ij) ∈ {0, 1, 2}, a_11 = a_22}`
Then the number of non-singular matrices in the set S is ______.