English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

If a, b, c, are all positive, and are pth, qth and rth terms of a G.P., show that apbqcr|logap1logbq1logcr1| = 0 - Mathematics

Advertisements
Advertisements

Question

If a, b, c, are all positive, and are pth, qth and rth terms of a G.P., show that `|(log"a", "p", 1),(log"b", "q", 1),(log"c", "r", 1)|` = 0

Sum

Solution

Given a, b, c are the pth, qth and rth terms of a G.P.

∴ a = ARp-1

b = ARq-1

c = ARr-1

Where A is the first term, R – common ratio.

Let Δ = `|(log"a", "p", 1),(log"b", "q", 1),(log"c", "r", 1)|`

= `|(log"AR"^("p" - 1)  "p", 1),(log"AR"^("q" - 1)  "q", 1),(log"AR"^("r" - 1)  "r", 1)|`

= `|(log"A" + log"R"^("p" - 1)  "p", 1),(log"A" + log"R"^("q" - 1)  "q", 1),(log"A" + log"R"^("r" - 1)  "r", 1)|`

= `|(log"A", "p", 1),(log"A", "q", 1),(log"A","r", 1)| + |(log"R"^("p" - 1)  "p", 1),(log"R"^("q" - 1)  "q", 1),(log"R"^("r" - 1)  "r", 1)|`

Property 7:

`|("a"_1 + "m"_1, "b"_1, "c"_1),("a"_2 + "m"_2, "b"_2, "c"_2),("a"_3 + "m"_3, "b"_3, "c"_3)| = |("a"_1, "b"_1, "c"_1),("a"_2, "b"_2, "c"_2),("a"_3, "b"_3, "c"_3)| + |("m"_1, "b"_1, "c"_1),("m"_2, "b"_2, "c"_2),("m"_3, "b"_3, "c"_3)|`

= `log"A"|(1, "p", 1),(1, "q", 1),(1, "r", 1)| + |(("p" - 1) log"R", "p", 1),(("q" - 1) log"R", "q", 1),(("r" - 1)log"R", "r", 1)|`

= `log"A" xx 0 + log"R" |("p" - 1, "p", 1),("q" - 1, "q", 1),("r" - 1, "r", 1)|  "C"_1 -> "C"_1 + "C"_3`

Property 4: If two rows (columns) of a determant are identical then its determinant value is zero.

= `0 + log"R"|("p" - 1 + 1, "p", 1),("q" - 1 + 1, "q", 1),("r" - 1 + 1, "r", 1)|`

= `0 + log"R"|("p", "p", 1),("q", "q", 1),("r", "r", 1)|`

Two columns of the determinant are identical.

 = 0 + log R × 0 

= 0

shaalaa.com
Determinants
  Is there an error in this question or solution?
Chapter 7: Matrices and Determinants - Exercise 7.2 [Page 29]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 7 Matrices and Determinants
Exercise 7.2 | Q 12 | Page 29

RELATED QUESTIONS

Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0


Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`


If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`


Show that `|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|` is divisiible by x


Find the value of `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` if x, y, z ≠ 1


Without expanding, evaluate the following determinants:

`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`


Without expanding, evaluate the following determinants:

`|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|`


If λ = – 2, determine the value of `|(0, lambda, 1),(lambda^2, 0, 3lambda^2 + 1),(-1, 6lambda - 1, 0)|`


Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`


Show that `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)


Identify the singular and non-singular matrices:

`[(2, -3, 5),(6, 0, 4),(1, 5, -7)]`


Determine the values of a and b so that the following matrices are singular:

B = `[("b" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`


Choose the correct alternative:
If A = `|(-1, 2, 4),(3, 1, 0),(-2, 4, 2)|` and B = `|(-2, 4, 2),(6, 2, 0),(-2, 4, 8)|`, then B is given by


A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the


Choose the correct option:

Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then


Let a, b, c, d be in arithmetic progression with common difference λ. If `|(x + a - c, x + b, x + a),(x - 1, x + c, x + b),(x - b + d, x + d, x + c)|` = 2, then value of λ2 is equal to ______.


If a, b, c are positive and are the pth, qth and rth terms respectively of a G.P., then the value of `|(loga, p, 1),(logb, q, 1),(logc, r, 1)|` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×