Advertisements
Advertisements
Question
If a, b, c, are all positive, and are pth, qth and rth terms of a G.P., show that `|(log"a", "p", 1),(log"b", "q", 1),(log"c", "r", 1)|` = 0
Solution
Given a, b, c are the pth, qth and rth terms of a G.P.
∴ a = ARp-1
b = ARq-1
c = ARr-1
Where A is the first term, R – common ratio.
Let Δ = `|(log"a", "p", 1),(log"b", "q", 1),(log"c", "r", 1)|`
= `|(log"AR"^("p" - 1) "p", 1),(log"AR"^("q" - 1) "q", 1),(log"AR"^("r" - 1) "r", 1)|`
= `|(log"A" + log"R"^("p" - 1) "p", 1),(log"A" + log"R"^("q" - 1) "q", 1),(log"A" + log"R"^("r" - 1) "r", 1)|`
= `|(log"A", "p", 1),(log"A", "q", 1),(log"A","r", 1)| + |(log"R"^("p" - 1) "p", 1),(log"R"^("q" - 1) "q", 1),(log"R"^("r" - 1) "r", 1)|`
Property 7:
`|("a"_1 + "m"_1, "b"_1, "c"_1),("a"_2 + "m"_2, "b"_2, "c"_2),("a"_3 + "m"_3, "b"_3, "c"_3)| = |("a"_1, "b"_1, "c"_1),("a"_2, "b"_2, "c"_2),("a"_3, "b"_3, "c"_3)| + |("m"_1, "b"_1, "c"_1),("m"_2, "b"_2, "c"_2),("m"_3, "b"_3, "c"_3)|`
= `log"A"|(1, "p", 1),(1, "q", 1),(1, "r", 1)| + |(("p" - 1) log"R", "p", 1),(("q" - 1) log"R", "q", 1),(("r" - 1)log"R", "r", 1)|`
= `log"A" xx 0 + log"R" |("p" - 1, "p", 1),("q" - 1, "q", 1),("r" - 1, "r", 1)| "C"_1 -> "C"_1 + "C"_3`
Property 4: If two rows (columns) of a determant are identical then its determinant value is zero.
= `0 + log"R"|("p" - 1 + 1, "p", 1),("q" - 1 + 1, "q", 1),("r" - 1 + 1, "r", 1)|`
= `0 + log"R"|("p", "p", 1),("q", "q", 1),("r", "r", 1)|`
Two columns of the determinant are identical.
= 0 + log R × 0
= 0
APPEARS IN
RELATED QUESTIONS
Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0
Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`
If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`
Show that `|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|` is divisiible by x4
Find the value of `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` if x, y, z ≠ 1
Without expanding, evaluate the following determinants:
`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`
Without expanding, evaluate the following determinants:
`|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|`
If λ = – 2, determine the value of `|(0, lambda, 1),(lambda^2, 0, 3lambda^2 + 1),(-1, 6lambda - 1, 0)|`
Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`
Show that `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)
Identify the singular and non-singular matrices:
`[(2, -3, 5),(6, 0, 4),(1, 5, -7)]`
Determine the values of a and b so that the following matrices are singular:
B = `[("b" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
Choose the correct alternative:
If A = `|(-1, 2, 4),(3, 1, 0),(-2, 4, 2)|` and B = `|(-2, 4, 2),(6, 2, 0),(-2, 4, 8)|`, then B is given by
A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the
Choose the correct option:
Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then
Let a, b, c, d be in arithmetic progression with common difference λ. If `|(x + a - c, x + b, x + a),(x - 1, x + c, x + b),(x - b + d, x + d, x + c)|` = 2, then value of λ2 is equal to ______.
If a, b, c are positive and are the pth, qth and rth terms respectively of a G.P., then the value of `|(loga, p, 1),(logb, q, 1),(logc, r, 1)|` is ______.