Advertisements
Advertisements
प्रश्न
If a, b, c, are all positive, and are pth, qth and rth terms of a G.P., show that `|(log"a", "p", 1),(log"b", "q", 1),(log"c", "r", 1)|` = 0
उत्तर
Given a, b, c are the pth, qth and rth terms of a G.P.
∴ a = ARp-1
b = ARq-1
c = ARr-1
Where A is the first term, R – common ratio.
Let Δ = `|(log"a", "p", 1),(log"b", "q", 1),(log"c", "r", 1)|`
= `|(log"AR"^("p" - 1) "p", 1),(log"AR"^("q" - 1) "q", 1),(log"AR"^("r" - 1) "r", 1)|`
= `|(log"A" + log"R"^("p" - 1) "p", 1),(log"A" + log"R"^("q" - 1) "q", 1),(log"A" + log"R"^("r" - 1) "r", 1)|`
= `|(log"A", "p", 1),(log"A", "q", 1),(log"A","r", 1)| + |(log"R"^("p" - 1) "p", 1),(log"R"^("q" - 1) "q", 1),(log"R"^("r" - 1) "r", 1)|`
Property 7:
`|("a"_1 + "m"_1, "b"_1, "c"_1),("a"_2 + "m"_2, "b"_2, "c"_2),("a"_3 + "m"_3, "b"_3, "c"_3)| = |("a"_1, "b"_1, "c"_1),("a"_2, "b"_2, "c"_2),("a"_3, "b"_3, "c"_3)| + |("m"_1, "b"_1, "c"_1),("m"_2, "b"_2, "c"_2),("m"_3, "b"_3, "c"_3)|`
= `log"A"|(1, "p", 1),(1, "q", 1),(1, "r", 1)| + |(("p" - 1) log"R", "p", 1),(("q" - 1) log"R", "q", 1),(("r" - 1)log"R", "r", 1)|`
= `log"A" xx 0 + log"R" |("p" - 1, "p", 1),("q" - 1, "q", 1),("r" - 1, "r", 1)| "C"_1 -> "C"_1 + "C"_3`
Property 4: If two rows (columns) of a determant are identical then its determinant value is zero.
= `0 + log"R"|("p" - 1 + 1, "p", 1),("q" - 1 + 1, "q", 1),("r" - 1 + 1, "r", 1)|`
= `0 + log"R"|("p", "p", 1),("q", "q", 1),("r", "r", 1)|`
Two columns of the determinant are identical.
= 0 + log R × 0
= 0
APPEARS IN
संबंधित प्रश्न
Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0
Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`
Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`
Show that `|(x + 2"a", y + 2"b", z + 2"c"),(x, y, z),("a", "b", "c")|` = 0
If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`
Find the value of `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` if x, y, z ≠ 1
If A = `[(1/2, alpha),(0, 1/2)]`, prove that `sum_("k" = 1)^"n" det("A"^"k") = 1/3(1 - 1/4)`
Verify that det(AB) = (det A)(det B) for A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]` and B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`
Identify the singular and non-singular matrices:
`[(1, 2, 3),(4, 5, 6),(7, 8, 9)]`
Choose the correct alternative:
If A = `[(1, -1),(2, -1)]`, B = `[("a", 1),("b", -1)]` and (A + B)2 = A2 + B2, then the values of a and b are
Choose the correct alternative:
If A = `[("a", x),(y, "a")]` and if xy = 1, then det(AAT) is equal to
Choose the correct alternative:
The value of x, for which the matrix A = `[("e"^(x - 2), "e"^(7 + x)),("e"^(2 + x), "e"^(2x + 3))]` is singular
Choose the correct alternative:
The value of the determinant of A = `[(0, "a", -"b"),(-"a", 0, "c"),("b", -"c", 0)]` is
Choose the correct alternative:
If A = `|(-1, 2, 4),(3, 1, 0),(-2, 4, 2)|` and B = `|(-2, 4, 2),(6, 2, 0),(-2, 4, 8)|`, then B is given by
The remainder obtained when 1! + 2! + 3! + ......... + 10! is divided by 6 is,
If Δ is the area and 2s the sum of three sides of a triangle, then
A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the
What is the value of Δ if, Δ = `|(0, sin alpha, - cos alpha),(-sin alpha, 0, sin beta),(cos alpha, - sin beta, 0)|`
Let a, b, c, d be in arithmetic progression with common difference λ. If `|(x + a - c, x + b, x + a),(x - 1, x + c, x + b),(x - b + d, x + d, x + c)|` = 2, then value of λ2 is equal to ______.