हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

If a, b, c, are all positive, and are pth, qth and rth terms of a G.P., show that apbqcr|logap1logbq1logcr1| = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c, are all positive, and are pth, qth and rth terms of a G.P., show that `|(log"a", "p", 1),(log"b", "q", 1),(log"c", "r", 1)|` = 0

योग

उत्तर

Given a, b, c are the pth, qth and rth terms of a G.P.

∴ a = ARp-1

b = ARq-1

c = ARr-1

Where A is the first term, R – common ratio.

Let Δ = `|(log"a", "p", 1),(log"b", "q", 1),(log"c", "r", 1)|`

= `|(log"AR"^("p" - 1)  "p", 1),(log"AR"^("q" - 1)  "q", 1),(log"AR"^("r" - 1)  "r", 1)|`

= `|(log"A" + log"R"^("p" - 1)  "p", 1),(log"A" + log"R"^("q" - 1)  "q", 1),(log"A" + log"R"^("r" - 1)  "r", 1)|`

= `|(log"A", "p", 1),(log"A", "q", 1),(log"A","r", 1)| + |(log"R"^("p" - 1)  "p", 1),(log"R"^("q" - 1)  "q", 1),(log"R"^("r" - 1)  "r", 1)|`

Property 7:

`|("a"_1 + "m"_1, "b"_1, "c"_1),("a"_2 + "m"_2, "b"_2, "c"_2),("a"_3 + "m"_3, "b"_3, "c"_3)| = |("a"_1, "b"_1, "c"_1),("a"_2, "b"_2, "c"_2),("a"_3, "b"_3, "c"_3)| + |("m"_1, "b"_1, "c"_1),("m"_2, "b"_2, "c"_2),("m"_3, "b"_3, "c"_3)|`

= `log"A"|(1, "p", 1),(1, "q", 1),(1, "r", 1)| + |(("p" - 1) log"R", "p", 1),(("q" - 1) log"R", "q", 1),(("r" - 1)log"R", "r", 1)|`

= `log"A" xx 0 + log"R" |("p" - 1, "p", 1),("q" - 1, "q", 1),("r" - 1, "r", 1)|  "C"_1 -> "C"_1 + "C"_3`

Property 4: If two rows (columns) of a determant are identical then its determinant value is zero.

= `0 + log"R"|("p" - 1 + 1, "p", 1),("q" - 1 + 1, "q", 1),("r" - 1 + 1, "r", 1)|`

= `0 + log"R"|("p", "p", 1),("q", "q", 1),("r", "r", 1)|`

Two columns of the determinant are identical.

 = 0 + log R × 0 

= 0

shaalaa.com
Determinants
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Matrices and Determinants - Exercise 7.2 [पृष्ठ २९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 7 Matrices and Determinants
Exercise 7.2 | Q 12 | पृष्ठ २९

संबंधित प्रश्न

Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`


Write the general form of a 3 × 3 skew-symmetric matrix and prove that its determinant is 0


Without expanding, evaluate the following determinants:

`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`


If A and B are square matrices of order 3 such that |A| = –1 and |B| = 3, find the value of |3AB|


If λ = – 2, determine the value of `|(0, lambda, 1),(lambda^2, 0, 3lambda^2 + 1),(-1, 6lambda - 1, 0)|`


Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`


Show that `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)


Show that `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)


Identify the singular and non-singular matrices:

`[(0, "a" - "b", "k"),("b" - "a", 0, 5),(-"k", -5, 0)]`


Choose the correct alternative:
If `|(2"a", x_1, y_1),(2"b", x_2, y_2),(2"c", x_3, y_3)| = "abc"/2 ≠ 0`, then the area of the triangle whose vertices are `(x_1/"a", y_1/"a"), (x_2/"b", y_2/"b"), (x_3/"c", y_3/"c")` is


Choose the correct alternative:
If x1, x2, x3 as well as y1, y2, y3 are in geometric progression with the same common ratio, then the points (x1, y1), (x2, y2), (x3, y3) are


Choose the correct alternative:
If ⌊.⌋ denotes the greatest integer less than or equal to the real number under consideration and – 1 ≤ x < 0, 0 ≤ y < 1, 1 ≤ z ≤ 2, then the value of the determinant `[([x] + 1, [y], [z]),([x], [y] + 1, [z]),([x], [y], [z] + 1)]`


Choose the correct alternative:
If A = `|(-1, 2, 4),(3, 1, 0),(-2, 4, 2)|` and B = `|(-2, 4, 2),(6, 2, 0),(-2, 4, 8)|`, then B is given by


A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the


What is the value of Δ if, Δ = `|(0, sin alpha, - cos alpha),(-sin alpha, 0, sin beta),(cos alpha, - sin beta, 0)|` 


For f(x)= `ℓn|x + sqrt(x^2 + 1)|`, then the value of`g(x) = (cosx)^((cosecx - 1))` and `h(x) = (e^x - e^-x)/(e^x + e^-x)`, then the value of `|(f(0), f(e), g(π/6)),(f(-e), h(0), h(π)),(g((5π)/6), h(-π), f(f(f(0))))|` is ______.


If a, b, c are positive and are the pth, qth and rth terms respectively of a G.P., then the value of `|(loga, p, 1),(logb, q, 1),(logc, r, 1)|` is ______.


If `|(1 + x, x, x^2),(x, 1 + x, x^2),(x^2, x, 1 + x)|` = ax5 + bx4 + cx3 + dx2 + λx + µ be an identity in x, where a, b, c, d, λ, µ are independent of x. Then the value of λ is ______.


If a, b, c, are non zero complex numbers satisfying a2 + b2 + c2 = 0 and `|(b^2 + c^2, ab, ac),(ab, c^2 + a^2, bc),(ac, bc, a^2 + b^2)|` = ka2b2c2, then k is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×