हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Show that aabacabbbcacbcc|a2+x2abacabb2+x2bcacbcc2+x2| is divisiible by x4 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that `|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|` is divisiible by x

योग

उत्तर

Let Δ = `|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|`

Δ = `"a"/"a"|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|`

Multiply C1 by a

Δ = `1/"a"|("a"^2 + "a"x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|`

Applying `"C"_1 -> "C"_1 + "bC"_2 + "cC"_3`

= `1/"a"|("a"^3 + "a"x^2 +"ab"^2 + "ac"^2, "ab", "ac"),("a"^2"b" + "b"^3 + "b"x^2 + "bc"2, "b"^2 + x^2, "bc"),("a"^2"c" + "b"^2"C" + "c"^3 + "c"x^2, "bc", "c"^2 + x^2)|`

= `1/"a"|("a"("a"^2 + "b"^2 + "c"^2 + x^2), "ab", "ac"),("b"("a"^2 + "b"^2 + "c"^2 + x^2), "b"^2 + x^2, "bc"),("c"("a"^2 + "b"^2 + "c"^2 + x^), "bc", "c"^2 + x^2)|`

= `("a"^2 + "b"^2 + "c"^2 + x^2)/"a" |("a", "bc", "ac"),("b","b"^2 + x^2, "bc"),("c", "bc", "c"^2 + x^2)|`

Applyig `"C"_2 -> "C"_2 - "bC"_1` and `"C"_3 -> "C"_3- "cC"_1`

= `("a"^2 + "b"^2 + "c"^2 + x^2)/"a" |("a", "ab" - "ab", "ac" - "ac"),("b", "b"^2 + x^2 - "b"^2, "bc" - "bc"),("c", "bc" - "bc", "c"^2 + x^2 - "c"^2)|`

= `("a"^2 + "b"^2 + "c"^2 + x^2)/"a" |("a", 0, 0),("b", x^2, 0),("c", 0, x^2)|`

Expanding along the first row

=  `("a"^2 + "b"^2 + "c"^2 + x^2)/"a" xx "a"[(x^2) (x^2) - (0) (0)] + 0 + 0`

= `("a"^2 + "b"^2+ "c"^2 + x^2)x^4`

Which is divisible by x4 

shaalaa.com
Determinants
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Matrices and Determinants - Exercise 7.2 [पृष्ठ २९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 7 Matrices and Determinants
Exercise 7.2 | Q 11 | पृष्ठ २९

संबंधित प्रश्न

Without expanding the determinant, prove that `|("s", "a"^2, "b"^2 + "c"^2),("s", "b"^2, "c"^2 + "a"^2),("s", "c"^2, "a"^2 + "b"^2)|` = 0


Show that `|(x + 2"a", y + 2"b", z + 2"c"),(x, y, z),("a", "b", "c")|` = 0


Write the general form of a 3 × 3 skew-symmetric matrix and prove that its determinant is 0


If `|("a", "b", "a"alpha + "b"),("b", "c", "b"alpha + "c"),("a"alpha + "b", "b"alpha + "c", 0)|` = 0, prove that a, b, c are in G. P or α is a root of ax2 + 2bx + c = 0


Prove that `|(1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")|` = 0


If a, b, c, are all positive, and are pth, qth and rth terms of a G.P., show that `|(log"a", "p", 1),(log"b", "q", 1),(log"c", "r", 1)|` = 0


If A is a Square, matrix, and |A| = 2, find the value of |A AT|


If A and B are square matrices of order 3 such that |A| = –1 and |B| = 3, find the value of |3AB|


Solve that `|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0


If cos 2θ = 0, determine  `[(theta, costheta, sintheta),(costheta, sintheta, 0),(sintheta, 0, costheta)]^2`


Find the value of the product: `|(log_3 64, log_4 3),(log_3 8, log_4 9)| xx |(log_2 3, log_8 3),(log_3 4, log_3 4)|`


Choose the correct alternative:
If A = `[(1, -1),(2, -1)]`, B = `[("a", 1),("b", -1)]` and (A + B)2 = A2 + B2, then the values of a and b are


Choose the correct alternative:
The value of x, for which the matrix A = `[("e"^(x - 2), "e"^(7 + x)),("e"^(2 + x), "e"^(2x + 3))]` is singular


Choose the correct alternative:
If `|(2"a", x_1, y_1),(2"b", x_2, y_2),(2"c", x_3, y_3)| = "abc"/2 ≠ 0`, then the area of the triangle whose vertices are `(x_1/"a", y_1/"a"), (x_2/"b", y_2/"b"), (x_3/"c", y_3/"c")` is


If P1, P2, P3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then `cosA/P_1 + cosB/P_2 + cosC/P_3` is equal to


Find the area of the triangle with vertices at the point given is (1, 0), (6, 0), (4, 3).


Choose the correct option:

Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then


If `x∈R|(8, 2, x),(2, x, 8),(x, 8, 2)|` = 0, then `|x/2|` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×