हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Prove that aabcbbcaccab|1aa2-bc1bb2-ca1cc2-ab| = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `|(1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")|` = 0

योग

उत्तर

L.H.S = `|(1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")|`

= `|(0, "a" - "b", "a"^2 - "bc" - "b"^2 + "ac"),(0, "b" - "c", "b"^2 - "ac" - "c"^2 + "ab"),(1, "c", "c"^2 - "ab")|  {:("R"_1 -> "R"_1 - "R"_2),("R"_2 -> "R"_2 - "R"_3):}`

= `|(0, "a" - "b", ("a"^2 - "b"^2) + ("ac" - "bc")),(0, "b" - "c", ("b"^2 - "c"^2) + ("ab" - "ac")),(1, "c", "c"^2 - "ab")|`

= `|(0, "a" - "b", ("a" + "b")("a" - "b") + "c"("a" - "b")),(0, "b" - "c", ("b" + "c")("b" - "c") + "a"("b" - "c")),(1, "c", "c"^2 - "ab")|`

= `|(0, "a" - "b", ("a" - "b")("a" + "b" + "c")),(0, "b" - "c", ("b" - "c")("a" + "b" + "c")),(1, "c", "c"^2 - "ab")|`

Taking (a – b)(b – c) from R1 and R2 respectively

We get (a – b)(b – c) `|(0, 1, "a" + "b" + "c"),(0, 1, "a" + "b" + "c"),(1, "c", "c"^2 - "ab")|` expanding along C1

(a – b)(b – c) {0 – 0 + 1[(a + b + c) – (a + b + c)]} = 0

=R.H.S

shaalaa.com
Determinants
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Matrices and Determinants - Exercise 7.2 [पृष्ठ २९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 7 Matrices and Determinants
Exercise 7.2 | Q 9 | पृष्ठ २९

संबंधित प्रश्न

Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0


Show that `|(x + 2"a", y + 2"b", z + 2"c"),(x, y, z),("a", "b", "c")|` = 0


Write the general form of a 3 × 3 skew-symmetric matrix and prove that its determinant is 0


Without expanding, evaluate the following determinants:

`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`


Without expanding, evaluate the following determinants:

`|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|`


Show that `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)


Show that `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)


Find the area of the triangle whose vertices are (0, 0), (1, 2) and (4, 3)


Identify the singular and non-singular matrices:

`[(2, -3, 5),(6, 0, 4),(1, 5, -7)]`


Choose the correct alternative:
If A = `[(1, -1),(2, -1)]`, B = `[("a", 1),("b", -1)]` and (A + B)2 = A2 + B2, then the values of a and b are


Choose the correct alternative:
If A = `[("a", x),(y, "a")]` and if xy = 1, then det(AAT) is equal to


Choose the correct alternative:
The value of x, for which the matrix A = `[("e"^(x - 2), "e"^(7 + x)),("e"^(2 + x), "e"^(2x + 3))]` is singular


Choose the correct alternative:
If x1, x2, x3 as well as y1, y2, y3 are in geometric progression with the same common ratio, then the points (x1, y1), (x2, y2), (x3, y3) are


If P1, P2, P3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then `cosA/P_1 + cosB/P_2 + cosC/P_3` is equal to


If f(x) = `|(cos^2x, cosx.sinx, -sinx),(cosx sinx, sin^2x, cosx),(sinx, -cosx, 0)|`, then for all x


A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the


What is the value of Δ if, Δ = `|(0, sin alpha, - cos alpha),(-sin alpha, 0, sin beta),(cos alpha, - sin beta, 0)|` 


If `x∈R|(8, 2, x),(2, x, 8),(x, 8, 2)|` = 0, then `|x/2|` is equal to ______.


Let S = `{((a_11, a_12),(a_21, a_22)): a_(ij) ∈ {0, 1, 2}, a_11 = a_22}`

Then the number of non-singular matrices in the set S is ______.


If a, b, c, are non zero complex numbers satisfying a2 + b2 + c2 = 0 and `|(b^2 + c^2, ab, ac),(ab, c^2 + a^2, bc),(ac, bc, a^2 + b^2)|` = ka2b2c2, then k is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×