Advertisements
Advertisements
प्रश्न
Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`
उत्तर
Let Δ = `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")|`
Δ = `|("a", 0, -"c"),(0, "b", -"c"),(1, 1, 1 + "c")| {:("R"_1 -> "R"_1 - "R"_3),("R"_2 -> "R"_2 - "R"_3):}`
= a[b(1 + c) + c(1)] – 0 – c[0 – b]
= a[b + bc + c] + bc
= ab + abc + ac + bc
= abc + ab + bc + ac
= abc
`["abc"/"abc" + "ab"/"abc" + "bc"/"abc" + "ac"/"abc"] = "abc" [1 + 1/"c" + 1/"a" + 1/"b"]`
Δ = `"abc" [1 + 1/"a" + 1/"b" + 1/"c"]``
APPEARS IN
संबंधित प्रश्न
Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`
Prove that `|(1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")|` = 0
If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`
Find the value of `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` if x, y, z ≠ 1
Without expanding, evaluate the following determinants:
`|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|`
If A and B are square matrices of order 3 such that |A| = –1 and |B| = 3, find the value of |3AB|
Solve `|(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0
Show that `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)
If (k, 2), (2, 4) and (3, 2) are vertices of the triangle of area 4 square units then determine the value of k
Determine the values of a and b so that the following matrices are singular:
A = `[(7, 3),(-2, "a")]`
Find the value of the product: `|(log_3 64, log_4 3),(log_3 8, log_4 9)| xx |(log_2 3, log_8 3),(log_3 4, log_3 4)|`
Choose the correct alternative:
If A = `[("a", x),(y, "a")]` and if xy = 1, then det(AAT) is equal to
Choose the correct alternative:
If `|(2"a", x_1, y_1),(2"b", x_2, y_2),(2"c", x_3, y_3)| = "abc"/2 ≠ 0`, then the area of the triangle whose vertices are `(x_1/"a", y_1/"a"), (x_2/"b", y_2/"b"), (x_3/"c", y_3/"c")` is
Choose the correct alternative:
if Δ = `|("a", "b", "c"),(x, y, z),("p", "q", "r")|` then `|("ka", "kb","kc"),("k"x, "k"y, "k"z),("kp", "kq", "kr")|` is
Choose the correct alternative:
If x1, x2, x3 as well as y1, y2, y3 are in geometric progression with the same common ratio, then the points (x1, y1), (x2, y2), (x3, y3) are
Choose the correct option:
Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then
`|("b" + "c", "c", "b"),("c", "c" + "a", "a"),("b", "a", "a" + "b")|` = ______.
Let S = `{((a_11, a_12),(a_21, a_22)): a_(ij) ∈ {0, 1, 2}, a_11 = a_22}`
Then the number of non-singular matrices in the set S is ______.